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“Hello, and thank you for considering this display.

Short summary: We present performance engineering of a TByte-scale air quality database (DB) 
system which was created by the Tropospheric Ozone Assessment Report (TOAR) and contains one of 
the world’s largest collections of near-surface air quality measurements. A special feature of our data 
service https://join.fz-juelich.de is on-demand processing of several air quality metrics directly from the 
TOAR database. As a service that is used by more than 150 users of the international air quality 
research community, our web service must be easily accessible and functionally flexible, while delivering 
good performance. The current on-demand calculations of air quality metrics outside the database are 
identified as the major performance bottleneck. In this study, we therefore explore and benchmark in-
database approaches for the statistical processing, which result in performance enhancements of up to 
32%. We will furthermore show how the web service infrastructure can be extended in functionality, 
allowing the calculation of flux-based ozone metrics.

The work is mainly based on our paper (Betancourt et al., in preparation). If you have questions, email 
me! c.betancourt@fz-juelich.de. I am looking forward to seeing you online, at our session!                                                                                                      ”

https://join.fz-juelich.de/
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• Motivation: Ozone impact on vegetation
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Summary and conclusions

Performance analysis and optimization of a TByte-
scale atmospheric observation database
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Why is it important? 

• Fast access to big data increases the quality, flexibility and outreach of scientific workflows, especially in 
interdisciplinary research

• Web interfaces to scientific databases enable easy access to scientific data and data products

• Scientific databases grow in size (to TB-scale and beyond), which poses growing challenges on their 
performance             [Gray and Szalay, 2002]

• Performance enhancements are most effective if the database and connected
applications / (web-) services are tuned together, in a context-aware approach  [Nimalasena and Getov, 2014]

Example screenshots from JOIN web interface to TOAR database



TOAR-DB service infrastructure
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Provides global air quality metrics according to established standards 
• The TOAR – DB is one of the world’s largest databases for near-surface air quality measurements and 

base for TOAR peer reviewed papers               [Schultz et al., 2017; Chang et al., 2017; Fleming et al., 2018; Gaudel et 
al., 2018; Lefohn et al., 2018; Mills et al., 2019; Young et al., 2019; Tarasick et al., 2019; Xu et al., 2020]

• The TOAR-DB comprises terabytes of measurements collected from public bodies, research institutions 
and air quality networks all over the world. It thus enables global assessment of air quality measurements

• Special feature of TOAR-DB service infrastructure: On-demand calculation of well documented air quality 
metrics. Data and air quality metrics are openly accessible via the graphical web interface JOIN or a
REST API on HDF cloud           [Hagemeier, 2019]

• Description of current set-up (see image below): 1) The end user requests statistical quantities 2) the web 
services trigger SQL queries via the Python psycopg2 library 3) the resulting raw data are transferred to 
the JOIN server 4) The data is processed on the JOIN server, then products are provided to the end user

End user Web server TOAR-DB

Set-up of TOAR-DB service infrastructure

https://join.fz-juelich.de/
https://join.fz-juelich.de/services/rest/surfacedata/
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Provides global air quality metrics according to established standards 
• The TOAR - DB is one of the world’s largest databases for near-surface air quality measurements and 

base for TOAR peer reviewed papers [Schultz et al., 2017; Chang et al., 2017; Fleming et al., 2018; Gaudel et 
al., 2018; Lefohn et al., 2018; Mills et al., 2019; Young et al., 2019; Tarasick et al., 2019; Xu et al., 2020]

• The TOAR-DB comprises terabytes of measurements collected from public bodies, research institutions 
and air quality networks all over the world. It thus enables global assessment of air quality measurements

• Special feature of TOAR-DB service infrastructure: On-demand calculation of well documented air quality 
metrics. Data and air quality metrics are openly accessible via the graphical web interface JOIN or a  
REST API on HDF cloud           [Hagemeier, 2019]

• Description of current set-up (see image below): 1) The end user requests statistical quantities 2) the web 
services trigger SQL queries via the Python psycopg2 library 3) the resulting raw data are transferred to 
the JOIN server 4) The data is processed locally, then provided to the end user 

End user Web server TOAR-DB

Set-up of TOAR-DB service infrastructure

Motivation for this work
 Throughput of our services is limited!

 Enhance by data processing inside the DB (as 
indicated in the image)?

 Design benchmarks of different tasks and test 
cases to check performance aspects 
individually

End user Web service TOAR-DB

https://join.fz-juelich.dehttps/join.fz-juelich.de
https://join.fz-juelich.de/services/rest/surfacedata/
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• Motivation: Ozone impact on vegetation

• Resources and realization

Summary and conclusions
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scale atmospheric observation database
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TOAR-DB Performance benchmarks
• Main objective: Data processing inside the database

via SQL user defined functions (indicated by red arrow in figure)

• Design different benchmarks, each highlighting
different performance aspects and use cases

• Each benchmark consists of different tasks and test cases
(see table below, elaboration follows)

• Focus on queries and processing of TOAR-DB ozone table. 
It has 109 rows, each containing timeseries_identifier, timestamp, value, status flag. Primary key is on first 
two columns

Benchmark Tasks Test cases
Data aggregation inside versus outside the
database

Count, maximum, average, standard deviation
of ozone values for given dates

1) “Python”
2) “SQL”
3) “PL/Pythonu”

Metrics calculation inside versus outside 
the database

Drmdmax1h, AOT40, dma8epa, W90 for
given series ids and years

1) “Python”
2) “SQL”

Parallel processing Parallel scan,
Parallel aggregate

1) max. 1 worker
2) max. 2 workers
3) max. 4 workers
4) max. 8 workers

Influence of indices on query times Maximum value for a given date (SQL query) 1) “o3_hourly”
2) “temp_hourly”

Transfer times between database server
and web server

Test bandwidths and latency 1) Ping round trip time test
2) Bandwiths test with iperf3

End user Web service TOAR-DB

Table: Benchmark overview

Set-up of TOAR-DB service infrastructure



Data aggregation inside vs. outside the database
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Motivation and tasks
- The performance of simple aggregates generalizes to 
more complex applications 

- Here, we picked a random date and aggregated all 
ozone values from this date

- Tasks: counting entries (‘count’), finding the maximum 
entry (‘max’), the mean value of all entries (‘avg’) and 
their standard deviation (‘std’)

- Transfer times and caching were avoided 

Test cases
- “Python”: The temporally filtered data was queried 
from the database and further aggregated in the Python 
data science framework NumPy (use case so far)

- “SQL”: The data was filtered and aggregated in form 
of an SQL query, then loaded into the Python cache

- “PL/Pythonu”: The aggregate was calculated inside 
the database by a user defined function in the imported 
procedural language PL/Pythonu, then loaded into the 
Python cache

Results
- Benchmark results. The cells contain execution time 
and standard deviation (n=100 each)

Discussion
- SQL aggregates are the fastest, with average time 
savings of 21.7% to 32.0%

- When comparing Python and SQL (last column in 
table), less time is saved with less computationally 
complex calculations (‘count’) and more time is saved 
with more complex the calculation (‘avg’, ‘std’)

Aggreg
ate

“Python” 
µ±σ [s]

“SQL”
µ±σ [s]

“PL/
Pythonu“ 

µ±σ [s]

Rel. Diff.
“Python”-
“SQL”

‘count’ 0.23 ± 0.05 0.18 ± 0.08 0.22 ± 0.03 21.7 %

‘max’ 0.27 ± 0.05 0.21 ± 0.07 0.26 ± 0.07 22.2 %

‘avg’ 0.25 ± 0.04 0.17 ± 0.03 0.26 ± 0.03 32.0 %

‘std’ 0.23 ± 0.04 0.16 ± 0.02 0.27 ± 0.06 30.4 %



Air quality metrics calculation inside vs. outside the database

7 May 2020 Slide 11

Motivation and tasks
- Main performance-critical use cases: calculation of 
different yearly air quality metrics on the ozone data 
table inside vs. outside the database

- Four common metrics were considered: ‘drmdmax1h’, 
‘AOT40’, ‘dma8epa’, ‘W90’  (Calculations require 
combination of (rolling) aggregation and data capture filtering)

- Metrics are documented by Schultz et al. [2017]

Test cases
- “Python”: Hourly ozone data from the given time 
series and period was queried from the database, and 
further processed in the Python data science 
framework Pandas (use case so far)

- “SQL”: The calculation was rewritten in a user defined 
function in SQL, and performed inside the database. 
Then the end result was loaded into the Python cache

Results
- Benchmark results. The cells contain execution time 
and standard deviation (n=250 each).

Discussion
- Calculating metrics in SQL is faster than 
Python. The average time difference varies between 
5.6% and 21.1%

- In SQL, metrics that include the calculation of 
hourly rolling means/sums (‘W90’, ‘dma8epa’) are 
comparatively slower than metrics that include only 
aggregates (‘drmdmax1h’, ‘AOT40’)

- SQL query plan: 50% of the time spent with 
temporal filtering, 50% for processing

Metric Python µ±σ
[s]

SQL µ±σ
[s]

Relative 
difference

‘drmdmax1h’ 0.18 ± 0.01 0.15 ± 0.01 16.7 %

‘AOT40’ 0.19 ± 0.02 0.15 ± 0.02 21.1 %

‘dma8epa’ 0.18 ± 0.02 0.17 ± 0.02 5.6 %

‘W90’ 0.18 ± 0.02 0.17 ± 0.02 5.6 %



Parallel processing
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Motivation and tasks
- In contrast to the two previous benchmarks, here we 
examine database speedup via parallel scans and 
aggregation in the database

- Tasks allow effective parallel processing. ‘scan’: 
parallel index scan across the entire ozone table that 
filters all ozone values below zero, indicating incorrect 
values. ‘agg’: parallel scan and aggregate across the 
full ozone table to output the mean of all ozone values

Test cases
- The speedup is tested by varying the maximum 
number of parallel workers allowed in a query

- Allowed number of workers: 1, 2, 4, 8

Results
- Benchmark results. The cells contain the actual 
number of workers spawned, the execution time, and 
the difference to execution time with one worker.

…

Discussion
- The query planner considers time needed to spawn
workers, process in parallel and gather results

- Depending on these times it may be infeasible to 
spawn all workers which are allowed     (see ‘scan’ with 8 
workers allowed but only 5 workers spawned, which takes longer 
than 4 workers)

- Parallel processing with more than 2 workers did not 
speed up the process. CPU load was always < 25%. 
This shows that the system is I/O bound.

Task
1 worker

allowed [#] / 
[s] / [%]

2 workers 
allowed

[#] / [s] / [%]

4 workers
allowed

[#] / [s] / [%]

8 workers
allowed

[#] / [s] / [%]

‘scan’
1

0.93
2 

0.68
- 26.9 %

4
0.65

- 30.1 %

5
0.98

+ 5.4%

‘agg’
1

99.03
2

78.71 
- 20.5 %

4 
71.43

- 27,9 %

8 
76.10

- 23.2 %



Influence of indices on query times
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Motivation and task
- Air quality monitoring data consists of time series, so 
many database queries require filtering over time

- Here we examine the importance of indices for the 
performance of temporal filtering in the database

- The task corresponds aggregate benchmark (Slide 
10), test case “SQL”: query all data from a randomly 
selected date, and output the maximum value

Test cases
- Compare performance tables that are similar in size 
and structure, but have different indices

- First, the ‘o3_hourly’ ozone table with index on 
datetime, value and id in addition to the primary key

- Second, the ‘temp_hourly’ table, which contains hourly 
temperature values and has only the primary key on id
and datetime

Results
- Benchmark results

Discussion
- Temporal filtering took several magnitudes longer 
without the index on datetime, id and value

- This also shows that the order of the indices is 
crucial

- Depending on whether a time range or a time 
series is of interest, different indices are used

Aggregate
“o3_hourly” 

(n=100)
µ±σ [s]

“temp_hourly” 
(n=20)
µ±σ [s]

‘max SQL’ 0.21 ± 0.07 82.63 ± 2.41



Transfer times between database server and web server
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Motivation and task
- DB server and web server are virtual machines on 
different hosts in HDF cloud       [Hagemeier, 2019]

- This means that transfer between machines is not 
avoidable

- Does ‘in-DB’ processing also save time by avoiding 
transfer between machines? If yes, how much?

- Test bandwidths and latency of transfer between 
machines

Test cases
- Test latency between virtual machines via the ping 
round trip time

- Test bandwidths using the iperf3 tool

Results Discussion

Ping round trip time is not avoidable regardless 
the amount of data transferred

- When comparing in-DB processing (transfer 
negligible) vs. web server processing (hourly data of 10 
years = ca. 1.2 MB tansferred), we notice that the 
transfer time is < 1 ms and thus negligible

Transfer bandwidths latency
Between virtual 

machines in HDF cloud 8.3 Gbit/s 0.7 ms ping round trip 
time

https://iperf.fr/iperf-download.php
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Motivation and task
- DB server and web server are virtual machines on 
different hosts in HDF cloud       [Hagemeier, 2019]

- This means that transfer between machines is not 
avoidable

- Does ‘in-DB’ processing also save time by avoiding 
transfer between machines? If yes, how much?

- Test bandwidths and latency of transfer between 
machines

Test cases
- Test latency between virtual machines via the ping 
round trip time

- Test bandwidths using the iperf3 tool

Results Discussion

Ping round trip time is not avoidable regardless 
the amount of data transferred

- When comparing in-DB processing (transfer 
negligible) vs. web server processing (hourly data of 10 
years = ca. 1.2 MB tansferred), we notice that the 
transfer time is < 1 ms and thus negligible

Transfer bandwidths latency
Between virtual 

machines in HDF cloud 8.3 Gbit/s 0.7 ms ping round trip 
time

“So much for the benchmarks.
The final conclusions come on
last slide. But first, let us take a
look at what else you can do
with this Web - Service set up!”

https://iperf.fr/iperf-download.php
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Summary and conclusions

Performance analysis and optimization of a TByte-
scale atmospheric observation database

Extend the functionality: Modeling global stomatal ozone fluxes
• Motivation: Ozone impact on vegetation

• Resources and realization



Motivation: Ozone impact on vegetation
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We have a great DB + Web service → What else can we do with it?
• Ozone harms crops and vegetation (see images). It is important to quantify the damage

• So far, TOAR + JOIN enabled global assessment of damage only by concentration based 
metrics [Mills et al., 2018]

• But: Ozone impact on vegetation can be quantified much better if the plant growing 
conditions are taken into account! → Flux based ozone metrics    [Mills et al., 2011]

• Flux-based ozone metrics need 1) input of meteorological data 2) consistent 
parametrization of plant phenology 3) integrated flux modeling with the DO3SE model

Cross section of leaf pore (‘stomata‘). 
Picture adapted from ICP  brochure
“Flux-based critical levels of ozone
pollution for vegetation“ 

Visible damage on French bean leaves. 
Picture adapted from: ICP  brochure “Have
you seen these ozone injury symptoms?“ 

https://www.sei.org/projects-and-tools/tools/do3se-deposition-ozone-stomatal-exchange/
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TOAR + DO3SE = Web - Service
→ Global, flux-based vegetation damage assessment possible

How can we bring together TOAR-DB and DO3SE model?
• Meteorological data:

 Extraction from gridded model data to air quality measurement station locations
 Stored either in the database or on the web server

• Phenology parametrization:
 The plant ecophysiologist community has to agree on parametrizations of growing seasons and 

phenology
 This is planned for the next phase of TOAR: TOAR-II

• DO3SE model:
 The model is written in FORTRAN
 It can be compiled and linked to the Python web-service via the F2PY module

• Further use:
 TOAR-II vegetation paper (planned)
 Assessment by International Cooperative Programme on Effects of Air Pollution on Natural 

Vegetation and Crops (ICP)



TOAR-DB performance benchmarks
• Overview

• Data aggregation inside versus outside the database

• Metrics calculation inside versus outside the database

• Parallel processing

• Influence of indices on query times

• Transfer times between database server and web server

Introduction: Fast access to scientific data products 
• Performance of scientific database applications
• TOAR-DB service infrastructure

7 May 2020 Slide 19

Extend the functionality: Modeling global stomatal ozone fluxes
• Motivation: Ozone impact on vegetation

• Resources and realization

Performance analysis and optimization of a TByte-
scale atmospheric observation database

Summary and conclusions



Summary and conclusions

7 May 2020 Slide 20

Extend the functionality: Modeling global stomatal ozone fluxes
 TOAR service infrastructure can be extended with embedded flux modeling

 This will allow a global assessment of flux based ozone metrics for
the first time

Fast access to scientific data products 
 Increases the quality, flexibility, reproducibility and outreach of scientific workflows

 Performance issues grow with size of DB

 Context – aware tuning of DB and service infrastructure recommended

TOAR-DB Performance benchmarks
 Server-side programming in SQL increases performance by up to 32%

 Optimal definition of indices is crucial, depending if filtered by time or series

 Data transfer times between web service and DB are negligible

 DB performance is I/O bound, so parallel scanning and processing does not scale well
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