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1. Introduction

Long-term high-precision runoff prediction is of considerablesignificanceto the water
resourceplanningand managemenand benefitto regionalsustainablalevelopmentWith the
global climate changethe watercycle is not only influencedby local meteorologicaklements
but alsoglobal climatefactorsincreasingly To screenout the sensitiveforecastingfactorsfrom

variouspotentialinfluencesboth in statisticalissuesand physicalbodies,andto introducethe

appropriataegressiomethod bothtraditionalregressioranddatamining arethe challenges

Owing to the effect of climate change,the trend and periodic featuresof water cycle
elementssuch as precipitation and runoff have changedinconsistentwith historical series,
becomingnonlinear and non-stationaryvariables The runoff is estimatedgenerallybasedon
local hydrological and/or meteorological variables, such as precipitation and potential
evapotranspiration(Archer and Fowler 2008 Singh and Sankarasubramaniar2014).
Researcheralso predictedthe runoff usingthe historical runoff by autoregressionelationship
(Ghorbaniet al. 2016 Tan et al. 2018. However, either the historical runoff seriesor local
meteorologicaldata could not explain the nonlinearity or nonstationarity Many researches
proved that climate indicators were globalcorrelatedto hydrological variablesstrongly and
coherently,and climate signalscan improve the forecastskill of the model (Lee and Julien
2016. Thus,theinfluenceof climateindicatorscannotbeunderstatec

The pairwise combinationforecastingof the abovethree methodswere appliedin runoff
predicting However,runoff asa periodicnaturalevent,the historicalflow will affectthe future
drainageobviously, and the autoregressiorshould be consideredn the forecasting Thus, a
principle of ALGEC was put forward, and the delay effect of predictorsin the lag of 0-11
monthsis consideredwhich is the focusandinnovationof this paper Additionally, considering
different key physicalmechanism®f runoff in different months,especiallyin the arid region,
we predicttherunoff monthby monthseparately

2. Study area and data

ShuleRiver Basin
T length of 670 km
T area of 39,497 km
T altitude from 932 5,791 m
T annual precipitation is 360 mm
T annual evaporation is 1,5)700 mm
T Runoff replenishment
I precipitation (3955%)
T shallow groundwater (£229%)
T glacial and snowmelt water (Z82%)
Monthly runoff data
T Jan. 1955Dec. 2017
T CMB station
T Target & autecorrelation analysis
Local meteorological data
T Jan. 1954Dec. 2017
T GuazhouGZ), Tuole(TL), Yumenzhen
(YMZ), and Dunhuang (DH) station
T Inputs & localcorrelation analysis
Global climate data
T Jan. 1954Dec. 2017
T Climate indexes
T Inputs & globalcorrelation analysis

4. Result and Discussion

3. Methodology

3.1 Machine Learning Model

4.1 Result and comparison

The monthly runoff seriesof CMB is forecastedoy the ALGEC model with BP, SVM, and RF
algorithmsusing different predictionfactor setsfor eachmonth, respectively When establishingthe
model,k-fold crossvalidation methodis used,andthe model performswell whenk equalsto 5. Thus,
all samplesaredividedinto threesetsrandomly,andeachtime, only onesetis selectedor verification,
andtheothertwo for modeltraining The modelis trainedandvalidatedfor five times

In general RF looks betterthanBP andSVM. The resultssuggesthatthe predictionmodelshavea
goodsimulationon the whole, especiallyin winter (Dec to Feh) andautumn(Sept to Nov.). In other

months thesimulationhasallittle worse
OBP ASVM ORF
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Fig. The schematic diagrams of BP (a), SVM (b), and RF (c)
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3.2 Criteria of prediction accuracy

In this paper, correlation coefficient (R)
and meanabsolutepercentageerror (MAPE)
areusedto evaluatahe modelperformance
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In orderto judgethe performanceof the
model more conveniently and intuitively
when consideringtwo or more indexes
comprehensively, an indicator IS
constructedo convertthe objectivesto an
Integrationindicator
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Among the threealgorithms,BP hasthe lowest
accuracy, and RF has the highest Although
machinelearning algorithms are good at solving
nonlinear problems, they are deeply condition
dependedBP is good at big data problems, but
- easyfalls into local optimum SVM is goodat high-

TheRis ranged-1,1] andMAPEis [0 E . - dimensionbut smallsampleproblem,so modeling
' . Theperfectabsolutevalueof Ris 1 and 100 W ~ 11 Issimpleandfast RF is simple,computedast, has
PR

of MAPEIs 0, sotheoptimalvalueof P stronggeneralizatiorability and hasadvantages
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where O, is the measuredralueand O

ave

is theaverageof O; O1 is the predictedvalue
andOl . istheaverageof O subscriptl and

EEMD-ANN hybrid approach. Journal of Hydrology 567, 7830.
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2.2 Ensemble and Screening Impact factors
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For monthly forecastingthe resultsof the dry seasorare betterand more accuratehanthoseof the wet seasongespecially
May andJune In May andearly June theglacierbeginsto melt andthe agriculturebeginsto irrigate, causinga largeartificial
Influence increasingthe uncertaintyand instability to the runoff. The runoff of July and Augustis mainly affectedby the
precipitation,andthe rainfall bringsmoreuncertaintyto runoff. For the dry seasonthe uncertaintyof the runoff is low, sothe
predictionaccuracys high. In Decemberthe runoff almostreducedo 0, sothe MAPE of runoff is large,sothe is lowerthan
othermonthsof dry season

4.2 Performance of the integration index T
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Reasonable to judge the model prediction ability and stability quickly and quantitively instead of selecting the best modebpectively

4.3 Model generalization and improvement

FWhen thdag,,,=0: interpolation and extension of missed historical data
t When thdag,,, =i Ei *0: leading time = year
TFor other bigger region, more data of different meteorological stations and global climate factors could be analyzes to ch
the prediction factors.
TNot enough discussion about the model performance and optimum effect of increasing the number of inputs
. the relationship of the model improvement and the computational time and resource consume could be studied
T Furtherstudyfor thereason®f thedifferenceof the predictionfactorsof the runoff of eachmonthandthewholerunoff series
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