

ATLID cloud/aerosol retrieval approaches applied to ALADIN

David Donovan¹, Gert-Jan van Zadelhoff¹, Thomas Flament², Dimitri Trapon², and Holgar Baars³

¹KNMI, Utrecht, Netherlands (donovan@knmi.nl)

³TROPOS, Leipzig, Germany

²Meto-France, Toulouse, France

Outline

- Retrieval of extinction and backscatter
 - What are the issues?
- Outline of ATLID inspired approach applied to Aeolus.
- Examples including trial comparison with ground-based lidar.
- Conclusions/outlook

Power

$$P(z = \frac{ct}{2}) = \frac{C}{z^2} \left(\beta_{Ray}(z) + \beta_{Mie} \right) \exp \left[-2 \int_0^z \left(\alpha_{Ray}(z') + \alpha_{Mie}(z') \right) dz' \right]$$

Attenuated backscatter

$$ATB = \frac{1}{C}z^{2}P(z) = P(z = \frac{ct}{2}) = (\beta_{Ray}(z) + \beta_{Mie})T^{2}(0, z)$$

$$\begin{pmatrix} ATB_{Ray,o} \\ ATB_{Mie,o} \end{pmatrix} = \begin{pmatrix} K_{Ray} & 0 \\ 0 & K_{Mie} \end{pmatrix} \begin{pmatrix} C_1 & C_2 \\ C_3 & C_4 \end{pmatrix} \begin{pmatrix} ATB_{Ray} \\ ATB_{Mie} \end{pmatrix}$$

Profiles of the "True" separate Rayleigh and Mie attenuated backscatters

IF high enough SNR extinction and backscatter can be directly derived!

The Essential problem...

Space-borne lidar signals are noisy!

 To take advantage of the HSRL lidars capabilities a decent SNR is required.

 Along-track averaging to increase the SNR is one solution. However one can not mix "strong" (e.g. cloud) and "weak" (e.g. aerosols) and returns and hope to get anything quantitatively useful!

What is currently Done

- The official L2a retrieval algorithm the ``Standard Correct Algorithm (SCA)'' is (fundamentally) a variation of the normal derivative approach for deriving extinction. (some alterations for accounting for low altitude resolution)
- It has high SNR requirements.
 - Extinction –to-backscatter ratios very noisy!
 - Uses observation level averaging as default.
- No handling of MS effects.
- Main product does not screen before averaging!
- Does not make optimal use of all available info.

Note on averaging

- Mixing of strong (e.g. cloud) and weak (e.g. aerosol) returns is NOT desirable.
- Cloud returns get blurred out!
- Extinction profiles can become meaningless.

- Averaging must be done in a smart manner!
- One also needs a ``solver'' that works at high-hor. res.

Since clouds and aerosols are variable on different scales and A multi-scale approach should be used! (e.g.)

Lessons from EarthCARE Developments

- Earth Clouds and Radiation Explorer (to be launched in 2022)
 - One of the 4 instruments is a HSRL Lidar.
 - Focused on Cloud and Aerosol Retrievals!

- Approaches being developed for the EarthCARE lidar (ATLID) specifically address the issues of low SNR and intelligent binning/averaging.
- Ideas (and even code) from ATLID Feature-Mask (A-FM) and the Profile processor (A-PRO) have been adapted to Aeolus.

Step 1: ATLID-Featuremask (A-FM)

- Provides a mask on the highest resolution possible. This facilitated adaptable binning/averaging strategies.
- Uses image processing ideas to identify features in the signals.
 - Edge preserving filter (Hybrid median) to detect strong features.
 - Iterative smoothing together with signal probability histogram analysis in order to detect weak signal areas.
- Variable height grid presents issues for the algorithm
 - Recent work has focused on transforming to and from a uniform grid.
 - Noise must also be homogenized /adjusted when going to higher resolution grid.

Example of A-FM adapted to Aeolus cross-talk corrected signals

Step-2: Optimal Estimation approach for extinction and Lidar-ratio retrievals.

 SCA(-like) method are not very well-suited for taking advantage of a multi-scale approach.

 A solver than can be reliably applied at measurement level is required.

 Thus, an optimal estimation (OE)approach "inspired" by the A-PRO ATLID approach has been applied to Aeolus.

Development of a OE based solver. That can be applied at different hor. resolutions (down to measurement level).

$$\chi^{2} = \left[(Y_{i} - y_{i}) \right] \left[C_{i,j} \right]^{-1} \left[(Y_{i} - y_{i}) \right]^{t} + \left[(X_{i_{a}} - x_{i_{a}}) \right] \left[C_{a,i_{a},j_{a}} \right]^{-1} \left[(X_{i_{a}} - x_{i,a}) \right]^{t}$$

$$y = observations = (ATB_{Ray_1}.....ATB_{Ray_{nz}}, ATB_{Mie_1}...ATB_{Mie_{nz}})$$

$$Y = Y(x) = forward modelled observations$$

$$x = \log state \quad \text{var } iables = \log(\alpha_1, \dots, \alpha_{nz}, S_1, \dots, S_{nz}, Ra_1, \dots, Ra_{nz}, C_{lid})$$

$$X_a = apriori \ values = \log(S_{a,1}....S_{a,nz}, Ra_{a,1}.....Ra_{a,nz}, C_{lid,a})$$

Some Examples-2a

A Cirrus Example

-160

-120

-80

-40

40

80

120

160

40°

Some Examples-3a

Some Examples-3c

Single measurement profile!

Tests Cases where ground-based Raman Lidar observations exist were chosen for comparison

- 1. AE_OPER_ALD_U_N_2A_20180929T032914035_003587996_000591_0001
- 2. AE_OPER_ALD_U_N_2A_20181005T234538024_009636001_000699_0001

Case-1 (6.10.2018 Al-Dhaid)

(6.10.2018 Al-Dhaid)

SES/AE_OPER_AUX_MET_12_20181005T221500_20181005T235000_0001.DBL

Overestimation of S likely due to too-much Rayleigh signal being removed from the Mie signal during the x-talk correction step.

SES/AE_OPER_AUX_MET_12_20181005T221500_20181005T235000_0001.DBL

29-09-2018 Haifa

29-09-2018 Haifa

Haifa, Israel, 2018-09-29 03:43:26.226533

Again: Overestimation of S likely due to too-much Rayleigh signal being removed from the Mie signal during the x-talk correction step.

AE_OPER_ALD_U_N_2A_20180929T032914035_003587996_000591_0001.DBL

Wrap-Up

- A-FM code has been successfully applied to Aeolus data.
- A prototype (Python/F95-hybrid) OE based procedure using ideas drawn from A-PRO has been developed.
- The procedures appear quite promising.
- Plans for further trials/inter-comparisons have been made!
- Issues noted:
 - Good L1 error estimates needed!
 - The X-talk must be correctly understood!

