Towards mechanical modelling of rock glaciers from modal analysis of passive seismic data

Antoine GUILLEMOT(1)

with Laurent BAILLET(1), Stéphane GARAMBOIS(1), Xavier Bodin(2), Agnès HELMSTETTER(1), Raphaël MAYORAZ(3), Éric LAROSE(1)

(1) Institut des Sciences de la Terre, Uni. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
(2) Grenoble Alpes, CNRS, Université Savoie Mont-Blanc, Laboratoire Environnements, Dynamiques et Territoire de Montagne (EDYTEM, UMR 5204)
(3) Geological unit of Canton du Valais, 1950 Sion, Switzerland Université
What is a rock glacier?

- Prominent features in alpine permafrost
- Creeping landforms composed of debris (coarse materials and fine matrices), ice, liquid water and air
- Climate indicator, used to assess permafrost spatial limits and their temporal degradation
- Slope movement from cm/yr to several m/yr

What can we learn from passive seismology about internal processes inside a rock glacier?
Passive seismic data on rock glaciers

Detection of microseismicity

- Burst of microseismic activity during snowfalls, snowmelt, summer (pore pressure increase ?)

Ambient noise crosscorrelation

- Seasonal variations of the relative velocity change (dV/V)
- The seismic velocity is higher in winter than in summer, probably due to the increase of global rigidity of the medium.

(Guillemot et al. 2020)
First results and open question

Seismic monitoring of rock glaciers

- Microseismicity
 - Detection and location of rockfalls and quakes (burst of activity during snowfalls, melting periods and summer)

- Ambient seismic noise
 - Seasonal variations of rigidity of the medium (freeze-thawing of active and permafrost layers), water infiltration during melting periods
 - Intercorrelation
 - Frequency content

From a previous study (Guillemot et al. 2020)

What can we learn about the frequency content of seismic noise on rock glaciers?
Two study sites:

Laurichard rock glacier (France)

Gugla rock glacier (Switzerland)
Modal analysis: observations (1/2)

Methodology

- Ambient noise recordings
- Fourier transform
- Frequency content
- Resonance frequency picking

Example of noise in Laurichard (two sensors)
Modal analysis: observations (2/2)

- Resonance frequency tracking of vibrating modes of the rock glacier structure
- Seasonal variations of resonance frequencies (black curves)

Laurichard rock glacier

Gugla rock glacier

Mechanical modelling?
Assumptions

- Rock glacier -> vibrating structure with a specific modal response to seismic sources
- The resonance frequency of these modes is highlighted by peaks in the spectrum
 (Guéguen et al. (2017))
- Seasonal variations of these resonance frequencies -> due to freeze-thawing cycles
- Freezing process increases the rigidity of the structure, causing an increase of resonance frequency in winter
 (Weber et al. (2018))

Methodology

- 2D mechanical modelling of the rock glaciers
- Constrained by geophysics and boreholes (Kneisel et al. (2008))
- Modal response numerically computed by finite-element method
- 3-phases poroelastic modelling of the rock glaciers (rock + water + ice)
- Quantification of the influence of freezing process on elastic parameters of the porous medium
- Modelling of resonance frequency increase due to freezing
Modal analysis: modelling (1/2)

Frequency Response Function from finite-element method

First mode of vibration

2D mechanical model of the rock glacier, constrained by geophysics (GPR, refraction)
Modal analysis: results of the model

Observations

Errorbars: influence of the porosity (low-high)

Consistency between observed and modelled resonance frequencies
Conclusions

Seismic monitoring of rock glaciers

Ambient seismic noise

Frequency analysis

Mechanical model of the rock glacier

Modal analysis

- Peaks due to resonance of the rock glacier
- Seasonal variations of resonance frequencies

Seasonal variations of rigidity of the medium (freeze-thawing processes), with precise quantification and location (maximum of sensitivity around 5 m depth)
Thanks for your attention!

Contact: antoine.guillemot@univ-grenoble-alpes.fr

References

