Secondary Ice Production in Antarctic clouds: a process neglected in large-scale models

Georgia Sotiropoulou1,2, Etienne Vignon3, Gillian Young4, Hugh Morrison5,6, Sebastian J. O’Shea7, Thomas Lachlan-Cope8, Alexis Berne3, Athanasios Nenes1,9

1Laboratory of Atmospheric Processes and their Impacts (LAPI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2Department of Meteorology, Stockholm University & Bolin Center for Climate Research, Sweden
3Environmental Remote Sensing Laboratory (LTE), EPFL, Lausanne, Switzerland
4School of Earth and Environment, University of Leeds, UK
5National Center for Atmospheric Research, Boulder, CO, USA
6ARC Centre for Excellence in Climate System Science, University of New South Wales, Sydney, Australia
7Centre for Atmospheric Science, University of Manchester, UK
8British Antarctic Survey, Cambridge, UK
9ICE-HT, Foundation for Research and Technology Hellas (FORTH), Patras, Greece

EGU General Assembly 2020
Antarctica is a remote and very clean environment, where INPs (aerosols that can act as Ice Nucleating Particles) are sparse.

- In-situ campaigns have revealed that Ice Crystal Number Concentrations (ICNCs) in Antarctic clouds are much higher than the available INPs.

How do these numerous ice crystals arise at temperatures $<-38^\circ C$?
Could Secondary Ice Production (SIP*) explain the enhanced ice crystal concentrations in Antarctica?

SIP* = *multiplication of the few primary ice crystals in the absence of additional INPs*

- **Ice-ice collisions:**
 - ✔️

- **Droplet shattering:**
 - ✔️
 - ❌ Not efficient in the Arctic (Fu et al. 2019; Sotiropoulou et al. 2019)

- **Ice fragments from riming:**
 - ✔️
 - (Hallet-Mossop)

- **The only SIP mechanism extensively implemented in models**
Modeling Secondary Ice Production in Antarctic Stratocumulus with WRF:

MAC campaign: “Microphysics of Antarctic clouds”

27 November 2015:
- Flight M218
- Flight M219

Young et al. 2019
WRF cannot reproduce the observed ice crystal concentrations!!!

NOTE: WRF includes only the Hallet-Mossop process
Implementation of Collisional Break-up in Morrison microphysics scheme (WRF V4.1)

Morrison: 2-moment bulk microphysics scheme with 5 hydrometeor species (cloud drops, rain drops, cloud ice, graupel, snow)

Fragmentation is assumed to occur after:

1) cloud ice – graupel collisions

2) cloud ice – snow collisions

3) snow – graupel collisions

4) graupel – graupel collisions

5) snow – snow collisions
Modeling MAC cases (Young et al. 2019) with the updated WRF model

Sensitivity Simulations:

- **PHIL0.2:** Phillips parameterization (2017) with an assumed rimed fraction \(\sim 0.2\) for the collided particle \((lightly rimed)\)
- **PHIL0.3:** rimed fraction \(\sim 0.3\) \((moderately rimed)\)
- **PHIL0.4:** rimed fraction \(\sim 0.4\) \((heavily rimed)\)

- **FRAG1:** constant fragmentation number \(\sim 1\) frag ejected per every collision
- **FRAGsiz:** constant fragmentation number with size restrictions \(\sim 1\) frag ejected after break-up of particles \(> 300\mu m\) (Schwarzenboeck et al., 2009)

- **TAKAH:** fragmentation number estimated using the temperature dependent Takahashi formula (Takahashi et al. 1995; Sullivan et al. 2018)
- **TAKAHsiz:** Takahashi formula scaled with size
WRF simulations of MAC case study

Total ice crystal number concentrations: N_{isg}

(a)

- **Black line**: default Morrison scheme (only Hallet-Mossop)
- **Grey line**: mean observations for the case study
- **Pink line**: mean observations for the whole MAC campaign
- **Other colors**: different parameterizations for collisional break–up

(b)

- **MAC**
- **Nov 27**
- **CNTRL**
- **PHIL0.2**
- **PHIL0.3**
- **PHIL0.4**
- **FRAG1**
- **FRAG1siz**
- **TAKAH**
- **TAKAHsiz**

Sotiropoulou et al., submitted to ACP
WRF simulations of MAC case study

Surface Cloud Radiative Forcing (CRF) Biases : CNTRL- Sensitivity test

Significant changes in surface cloud radiative forcing when a parameterization for collisional break-up is included in WRF!
Conclusions:

- Break-up from ice–ice collisions can explain the enhanced ice crystal number concentrations observed in Antarctic clouds.

- Phillips parameterization for break-up (Phillips et al. 2017) performs well only if a high rimed fraction is assumed for the particles that undergo fragmentation.

- Improved performance by parameterizations that account for the influence of the collided particle’s size (e.g. PHIL0.4, FRAG1siz, TAKAHsiz).

- Implementing collisional break-up in atmospheric models can substantially impact the representation of the surface radiation budget.