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Antarctica is a remote and very clean

F
Pi-L
environment, where INPs ( aerosols that can act
as Ice Nucleating Particles) are sparse

O’Shea et al.
2017
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al. 2012
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In-situ campaigns have revealed that Ice Crystal Number Concentrations (ICNCs) in
Antarctic clouds are much higher than the available INPs

How do these numerous ice crystals arise at
temperatures <-38°C?
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cPrL Could Secondary Ice Production (SIP*) explain th
enhanced ice crystal concentrations in Antarctica ?
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SIP* = multiplication of the few primary ice crystals in the absence of additional INPs

v’ ice-ice collisions:

Dl Q v Droplet shattering: Not efficient in the

Arctic (Fu et al
- 2019; Sotiropoulou
| © o,
® 0' ‘
0.0. —

et al. 2019)

v Ice fragments from riming: (Hallet-Mossop)

‘ ’ ‘ J\ﬁ The only SIP
‘ ‘ ‘ ‘ \ mechanism
. ‘ ’ - extensively

’ implemented in
‘\ff ‘ models
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PrL Modeling Secondary Ice Production in Antarctic §°
Stratocumulus with WRF: E
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MAC campaign:
“Microphysics of
Antarctic clouds”

27 November 2015:

s Flight M218

Young et al. 2019
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27-Nov-2015
mmmm Mean (MAC)
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=== Mean (PolarWRF)
- == Extremes (PolarWRF)

WRF cannot reproduce the
observed ice crystal
concentrations!!!

NOTE: WREF includes only the
Hallet-Mossop process
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= P =L Implementation of Collisional Break-up in Morrison
microphysics scheme (WRF V4.1)

Morrison: 2-moment bulk microphysics scheme with 5 hydrometeor
species (cloud drops, rain drops, cloud ice, graupel, snow)

fragmentation of ice

Fragmentation is assumed to occur after:

fragmentation of ice

1) cloud ice — graupel collisions

2) cloud ice — snow collisions

fragmentation of snow

3) snow — graupel collisions
Fragments

added to

cloud ice
category

4) graupel — graupel collisions

5) snow — snow collisions
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PrL Modeling MAC cases (Young et al. 2019) with ) MM’\O
the updated WRF model %

Sensitivity Simulations:

PHILO.2: Phillips parameterization (2017) with an assumed rimed fraction ~0.2
for the collided particle (lightly rimed)

e PHILO.3: rimed fraction ~ 0.3 (moderately rimed)
 PHILO.4: rimed fraction ~ 0.4 (heavily rimed)

 FRAG1: constant fragmentation number ~ 1 frag ejected per every collision

* FRAGsiz: constant fragmentation number with size restrictions ~ 1 frag ejected
after break-up of particles > 300um (Schwarzenboeck et al., 2009)

 TAKAH: fragmentation number estimated using the temperature dependent
Takahashi formula (Takahashi et al. 1995; Sullivan et al. 2018)

e TAKAHSsiz: Takahashi formula scaled with size



P-L WRF simulations of MAC case study

Mean total ice crystal number concentrations : N,

(b) MAC
== Nov 27
—e— CNTRL
—s— PHILO.2
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PHILO.4
—=— FRAGH
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Normalized Frequency
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Black line : default Morrison scheme (only Hallet-Mossop)

Grey line: mean observations for the case study
Pink line: mean observations for the whole MAC campaign
Other colors: different parameterizations for collisional break —up

Sotiropoulou et al., submitted to ACP



=PrL WRF simulations of MAC case study

A
Surface Cloud Radiative Forcing (CRF) Biases : CNTRL- Sensitivity test n 5 s
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Significant changes in surface cloud radiative forcing when a
parameterization for collisional break-up is included in WRF!



m
T
"1
=

WRF simulations of MAC case study

Sensitivity of collisional break-up to uncertainties in
primary ice production

1 Mean concentrations 3 95t percentile

- Nov 27
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—0— CNTRL_INP10

—0— PHILO0.3_INP10
PHILO.4_INP10

e INP x 0.1: PHILO.3_INPO.1 and PHILO.4_INPO.1 do not produce secondary ice due to
lack of enough primary ice crystals to initiate collisional break-up

* INP x 10: Small differences between PHILO.3 — PHILO.3 _INP10 and PHILO.4 —PHILO.4_INP10
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Conclusions: Cet Al

» Break-up from ice—ice collisions can explain the enhanced ice crystal number
concentrations observed in Antarctic clouds

» Phillips parameterization for break-up (Phillips et al. 2017) performs well
only if a high rimed fraction is assumed for the particles that undergo
fragmentation

» Improved performance by parameterizations that account for the influence
of the collided particle’s size (e.g. PHILO.4, FRAG1siz, TAKAHSsiz)

» Implementing collisional break-up in atmospheric models can substantially
impact the representation of the surface radiation budget

» Little sensitivity of collisional break-up to uncertainties in primary ice
production, as long as there are enough primary ice crystals to initiate the
process

contact: georgia.sotiropoulou@epfl.ch



