Climate extremes and ecosystem resilience in a future world

Michael Bahn

In a future world

ecosystems will likely face an increase in the frequency and severity of climate extremes, interacting with other global changes incl. a.o. climate warming, elevated CO₂ and land-use changes

Land Use Alters the Drought Responses of Productivity and CO₂ Fluxes in Mountain Grassland

Abandoned grassland more resistant and managed grassland more resilient because of plant soil-interactions ...

... shifts in the plant resource economics spectrum and related belowground carbon partitioning to storage versus metabolic use ...

... and biodiversity effects on stability

Effects of climate extremes in warmer future under elevated CO₂

Elevated CO₂: faster recovery of CO₂-uptake after drought

Antagonistic effects of warming and eCO₂ on soil moisture and soil CO₂ fluxes - and extended drought legacies

ClimGrass

Bivariate framework for a comparable quantification of resilience across ecosystems and disturbances

How well do we understand tipping points and the underlying mechanisms?

Gradients

Experiments

How can we project the future based on observations from the past, and models based on such observations?

Recovery time (month)

How can we project the future based on observations from the past, and models based on such observations?

54% (drought) and 48% (irrigation) of models not statistically different from experimental observations

Experiments and meta-analyses need to move towards regression-based approaches to capture nonlinear effects

Conclusions

To understand and project the consequences of climate extremes in a future world (increased frequency and severity of extreme events, compound events, interactions with other global change factors) we need to

- Establish a new generation of (co-ordinated) experiments and metaanalysis pursuing regression-based approaches
- Test for interactive effects of multiple drivers on threshold responses
- Account for implications of human intervention and advance the understanding of the adaptive capacity of social-ecological systems to absorb climate extremes