Linking the mechanics of polygonal faults with hydrothermal activity and marine biosphere – the Guadeloupe geothermal system

Christoph von Hagke (1, christoph.vonhagke@emr.rwth-aachen.de), Katharina Leu (1), Elco Luijendijk (2), Melody Philippon (3), Stefan Back (1), Jean-Frédéric Lebrun (3), Sebastien Cordonnier (4), Silvina Gonzalez-Rizzo (4), Olivier Gros (4), Aurelien Gay (5)

(1) RWTH Aachen University, Geological Institute, Aachen, Germany, (2) University of Göttingen, Germany, (3) UMR 5243 Geosciences Montpellier, CNRS, Université de Montpellier, Université des Antilles, Pointe à Pitre, Guadeloupe (FWI), (4) UMR 7205 ISYEB, MNHN-CNRS-Sorbonne Université, EPHE-UA. Équipe Biologie de la Mangrove, Univ Antilles. Guadeloupe, France, (5) UMR 5243 Geosciences Montpellier, CNRS, Université de Montpellier, Université des Antilles, Montpellier, France

Introduction

Polygonal faults are ubiquitous features, commonly observed in seismic images of fine-grained sedimentary successions along many passive margins. They have been reported from many areas around the world (Fig. 1).

Figure 1: compilation of areas where polygonal faults have been reported. Different mechanisms for the formation of polygonal faults have been put forward, but the mechanics of these structures remain not well understood.

In this study, we present data from a polygonal fault system in Guadeloupe, where it is directly accessible at the seafloor at a depth of 5 m. This offers a unique opportunity to investigate the mechanics of polygonal faults, which are most commonly only observed on seismic data.

The Geology of Guadeloupe

Guadeloupe shows relatively distributed hydrothermal activity, not only close to the active volcano but also in an area aptly named Bouillante, some 20 km from the volcano. Important for geothermal energy, one geothermal power plant active and another one planned.

Tahiti beach - polygonal structures

At Tahiti Beach in Guadeloupe polygonal structures can be observed a water depth of 5 meters. The structures are distinct because of their bright orange color, which are of microbial origin. The system is exceptional, as it provides an accessible link between a hydrothermal system and marine biota.

Mapping polygonal structures

Why orange?

• Samples contained orange biofilm: microbial origin?
• SEM images: orange patches of sand colonised by diatoms
• Diatoms like Si-rich hydrothermal waters. Orange patches signify diffuse discharge of Si-rich hydrothermal water?

Bouillante Bay - hot fluids

Why orange?