The STIMTEC experiment at the Reiche Zeche Underground Laboratory

<u>C. Böse¹</u>, J. Renner², G. Dresen^{1,3} and STIMTEC Team

1 Geoforschungszentrum Potsdam, Germany; 2 Ruhr Universität Bochum, Germany

GFZ

POTSDAM

3 Universität Potsdam, Germany

Outline

- Introduction STIMTEC experiment
- Reiche Zeche URL / Infrastructure
- Overview of field and lab measurements
 - Anisotropy characterisation
 - Stimulation
 - Stress measurements
- Summary & Conclusions

Introduction: STIMTEC experiment

STIMTEC hydraulic stimulation experiment at Reiche Zeche mine

- involves real-time monitoring technologies and 3-D numerical modelling
- **aims** to understand hydro-mechanical processes that occur during hydraulic stimulation, by associating and correctly identifying them through their seismic and hydraulic fingerprints
- comprised three phases that were completed in December 2019:

Pre-stimulation characterisation phase

Stimulation phase

Post-stimulation validation & characterisation phase

• a joint effort of an inter-disciplinary team

Reiche Zeche Underground Lab

- Target volume ~60 x 30 x 20 m³ of strongly foliated metamorphic Freiberg gneiss between two access tunnels
- comprises steeply dipping deformation zones
- foliation is subhorizontal

Instrumentation & Borehole Monitoring Network

- 17 boreholes (Ø=76 mm)
- 12 AE sensors (1-100 kHz)
- 3 accelerometers (0.05-25 kHz)
- 1 broadband seismometer (0.01-100 Hz)
- 1 AE-type hydrophone (1-40 kHz)
- Up to 7 hydraulic pressure gauges

Target acoustic

emissions (AE)

10⁻⁴ 10⁻³

Moment magnitude

10⁻² 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ Source radius [m]

HELMHOLTZ

Overview of field measurements

Dataset/ measurement	Acoustic TV/Sonic log		Impression packer	Pressure
(Unit)	(length in m)		(no. of intervals)	(no. of gauges)
Time relative to	before	after	after	during
	stimulation		stimulation	stimulation
Injection BH	60	60/49	10	continuous (5)
Hydraulic monitoring BH	25	-	-	continuous (2)
Vertical validation BH	-	15	3	-
Horizontal validation BH	-	64	-	-
Cable BH	-	-	-	-

The field campaigns produced high-quality sets of hydraulic, seismic and logging data.

Dataset/ measurement	Ultrasonic transmission		Hydraulic t	Acoustic emission	
(Unit)	(points along well)		(no. of intervals)		(events located)
Time relative to	before	after	before/after	after	during
	stimulation		drilling of validation BH		stimulation
Injection BH	30 x 2 orient.	67	6/9	7	11000
Hydraulic monitoring BH	-	26	-	-	-
Vertical validation BH	19	19	2	5	140
Horizontal validation BH	-	70	-	-	-
Cable BH	-	26	-	-	-

Renner et al. ARMA newsletter summer 2020

Overview of field measurements

Dataset/ measurement	Acoustic TV/Sonic log	Impression packer	Pressure	The field compaigns		
(Unit)	(length in m)	(no. of intervals)	(no. of gauges)	The new campaigns		
Time relative to	before after	after	during	produced high-quality		
	stimulation	stimulation	stimulation	cots of hydraulis solismis		
Injection BH		and		sets of figuraulic, seisific		
Hydraulic monitoring BH	< To identify and >		To monitor th	he and logging data.		
Vertical validation BH	characterise pre-existing		offect of the			
Horizontal validation BH	and new fractures		enect of the			
Cable BH	<u> </u>		stimulation			
			in real time			
			ı ↓			
Dataset/ measurement	Ultrasonic transmission	Hydraulic testing	Acoustic emission			
(Unit)	(points along well)	(no. of intervals)	(events located)			
Time relative to	before after	before/after after	during			
	stimulation	drilling of validation BH	stimulation			
Injection BH			11000			
Hydraulic monitoring BH	To character-	To characterise	-			
Vertical validation BH	ise seismic	enhancement i	n 140	Renner et al. ARMA newsletter		
Horizontal validation BH	anisotropy	hydraulic properties		summer 2020		
Cable BH	- 20		-			

HELMHOLTZ

Overview of lab measurements

- 3-point bending tests
- laboratory mini-frac tests (confining pressures of 1–7 MPa, injection rate of 0.1 ml/s)
- triaxial compression experiments (3– 5 MPa)

Anisotropy: Comparison lab and field

- Lab and field P-wave velocity measurements display same means and ranges
- Elastic wave anisotropy (12% on average), best described by vertical transverse isotropy, is caused by the sub-horizontal foliation

HELMHOLTZ

10 stimulation intervals along a 63 m long, 15° inclined injection borehole, real-time monitoring of acoustic emission activity and periodic pumping tests

Hydraulic Stimulation (16-18 July 2018)

HF5	HF4	HF3	HF2	HF1
4.0 m	6.7 m	9.3 m	11.7 m	13.2 m
21/8	21/8	21/8	21/8	20/8
11:00-11:45	10:05-10:46	9:00- 9:45	8:10-8:40	13:10-14:00
22	19 I	21	18 I	33 I
11.07 MPa	14.95 MPa	7.95 MPa	14.73 MPa	7.46 MPa
303 AEs	188 AEs	52 AEs	56 AEs	9 AEs

Stress

measurements in vertical validation borehole

- 5 minifrac intervals
- Horizontal hydrofracs created in three intervals
- Variable breakdown pressures (7-15 MPa)
- Seismic activity decreases with depth

HELMHOLTZ

Summary & conclusions

- In July 2018, a mine-scale hydraulic stimulation experiment with 10 stimulated intervals was conducted at the Reiche Zeche underground lab in Freiberg, Germany.
- The metamorphic gneiss formation exhibits moderate to strong elastic wave anisotropy (2– 30%, average 12%) with fast and slow propagation parallel and perpendicular to the foliation, according to active seismic measurements and lab measurements.
- The seismic and hydraulic responses to stimulation vary significantly along the length of the injection borehole with many AE events and high breakdown pressures at the shallowest injection intervals (22.4-28.1 m depth), few AE events and a range of breakdown pressures at intervals at intermediate depth (33.7-40.6 m depth) and low breakdown pressures and no seismic activity at the deepest injection intervals (49.7-56.6 m depth).
- Three validation boreholes were drilled in mid-2019 into seismically active and inactive areas and confirmed enhancement of hydraulic properties.
- Stress measurements through minifracs in the vertical validation borehole yield as variable seismic and hydraulic characteristics as in the injection borehole.
- The evaluation of the hydraulic testing and validation phases of the experiment is ongoing.

HELMHOLT7

More Info: http://stimtec.rub.de/ Next ARMA newsletter 2020

STIMTEC team: B. Adero, F. Becker, F. Blümle, C. M. Boese, Y. Cheng, G. Dresen, T. Fischer, T. Frühwirt, C. Janssen, V. A. Jimenez Martinez, G. Klee, H. Konietzky, G. Kwiatek, K. Plenkers, S. Rehde, J. Renner, J. Starke, C. Wolin, T. Wonik

SPONSORED BY THE

Thank you for your attention!

Federal Ministry of Education and Research

