IEA Wind Task 36

Gregor Giebel, DTU Wind Energy W. Shaw, H. Frank, C. Möhrlen, C. Draxl, J. Zack, P. Pinson, G. Kariniotakis, R. Bessa EGU Online 2020

Technology Collaboration Programme

Overview

News from IEA Wind Task 36 on Forecasting:

- Meteo benchmark coming up, info portal continuously updated
- End-user workshop in Glasgow
- Games motivating probabilistic information use

Additional material the Annex:

- What is the International Energy Agency?
- What is short-term prediction of wind power?
- What is the role and setup of IEA Wind Task 36?
- Achievements: Information portal, Recommended Practice, papers, handouts

Task Objectives & Expected Results

Task Objective is to encourage improvements in:

- 1) weather prediction
- 2) power conversion
- 3) use of forecasts

Task Organisation is to encourage international collaboration between:

- → Research organisations and projects
- → Forecast providers
- → Policy Makers
- → End-users and stakeholders

Task Work is divided into 3 work packages:

WP1: Weather Prediction Improvements WP2: Power and Uncertainty Forecasting WP3: Optimal Use of Forecasting Solutions

Current Term: 2019-2021 (First term 2016-2018)

WP1 Meteorology Current state-of-the-Art

- Verification&Validation benchmark defined (US results to be published end of June, benchmark to be published on Atmosphere2Electrons (A2E) site)
- Continuously updating the lists, and work underway to use the collected data sets for Numerical Weather Prediction

SITE NAME	COORDINATES	ALTITUDE ABO∨E MSL	TOWER HEIGHT	URL	CONTACT	DATA POLICY	DATA FORMAT	OBS. PERIOD	OTHER
Cabauw, NL	4.926° E, 51.97° N	-0.7 m	200 m	www.cesar-observatory.nl/index.php	henk.klein.baltink@knmi.nl	<u>Cesar data policy</u>	netCDF	2000-04-01 to previous month	
IJmuiden, NL	3.436° N, 52.848° E	0 m	92 m	www.meteomastijmuiden.nl/en /measurement-campaign/	verhoef@ecn.nl			since 2012	offshore North Sea
Risø, DK	12.088° E, 55.694° N	0 m	125 m	rodeo.dtu.dk/rodeo /ProjectOverview.aspx?&Project=5& Rnd=975820	Allan Vesth	Ask nicely		1995-11-20 -	Data measure since 1958; some months break in 2008.
Østerild, DK	8.88080° E, 57.04888° N	9 m	250 m	rodeo.dtu.dtk/rodeo (ProjectOverview.aspx?&Project=179& Rnd=975820	Yoram Eisenberg	Ask nicely		2015-01-28 -	Two 250m masts in 4.3 kr distance, both instrumented.

WP2 IEA Recommended Practice on Forecast Solution Selection

- Received feedback from industry, use of some concepts starts to appear in tenders
- Requires more dissemination, e.g. on Hybrid systems workshop
- Version Update (2021):
 - More input from industry
 - Filling in found omissions
 - More examples
 - Collaboration with IEA Solar Task

WP3 Optimal Use of Forecasting Solutions

- Definition of forecast error spread / confidence intervals vs forecast uncertainty
- Continued collaboration with IEC SC 8A Workgroup on Technical Report IEC63043
- Standardisation of meteorological data feeds and instrumentation for forecasting
- Value of forecasts: investigation started by analysis (ppt, paper underway) and forecast game/experiment: https://mpib.eu.qualtrics.com/jfe/form/SV_d5aAY95q2mGI8El (feel free to play it yourself - it's still open !)

WP3 End-user Workshop in Glasgow

"Maximising Value from State-of-the-art Wind Power Forecasting Solutions" hosted by Jethro Browell at Strathclyde University, Glasgow, 21 Jan 2020

- Talks by academia and industry (e.g. UK National Grid, WindPoint, UStrathclyde)
- Open Space discussion on RP, data and forecast value
- Game on value of probabilistic forecasts (feel free to play it it's still open !): https://mpib.eu.qualtrics.com/jfe/form/SV_d5aAY95q2mGI8El
- Streamed on YouTube: https://www.youtube.com/watch?v=1NOIr7jluXI

WP3 Forecast Games and Experiments: Game 1: Offshore wind power decision making in extreme events

Conducted by Dr. Corinna Möhrlen, WEPROG in collaboration with Dr. Nadine Fleischhut, MPI for Human Development, Berlin

<u>3 Postulates formed the basis for the experiment design:</u>

- (1) Success in the trading is highly dependent on the costs of the balancing power needed due to forecast errors
- (2) 5% of the cases, where there are large forecast errors are responsible for 95% of the costs in a month or year
- (3) Reducing these costs is more important than improving the general forecasts by $\sim 1\%$

The Experiment:

Decide in 12 cases whether to trade 50% or 100% of the generating power of an offshore wind park according to an available forecast given the possibility of a high-speed shutdown, where the wind park stops generating due to excessive wind conditions.

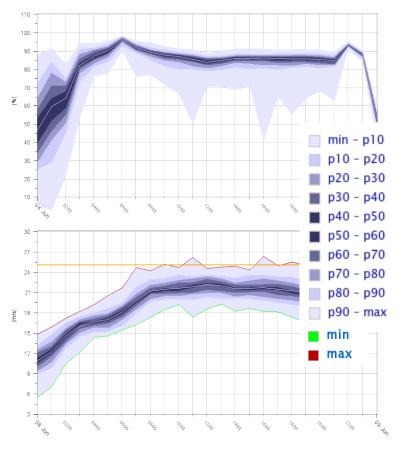
Definition of a "high-speed shutdown" (HSSD) or "cut-off wind" event :

A high-speed shutdown event occurs typically in the wind range above 21-27m/s, mostly known as the cut-off wind threshold of 25 m/s. Note that wind turbines use both wind gusts and the mean wind to determine, whether or not they turn into high-speed shutdown (HSSD).

Forecast Game 1:

Offshore wind power decision making in extreme events

Type of forecasts used in the experiment:


In the experiement are determinisitic and probabilistic forecasts for the **day-ahead horizon**. All forecasts are generated with input from NWP (numerical weather prediction) forecasts from the 00UTC cycle the day before.

3 independent deterministic wind power forecasts in the unit [% of installed capacity] based on 3 different NWP (numerical weather prediction) models

1 wind speed forecast in the unit [m/s], which is a mean forecast from 75 ensemble members and smoother than a typical deterministic forecast. Additionally, you see a reference line for the 25m/s threshold reference value for high-speed shutdown or also sometimes called cut-off wind speed threshold.

Forecast Game 1: Offshore wind power decision making in extreme events

9 wind power percentiles (P10..P90) and a mean (white line) in the unit [% of installed capacity] generated from 75 NWP forecasts of a multi-scheme ensemble prediction system.

9 wind speed percentiles P10..P90 and a mean (white line) in the unit [% of installed capacity] generated from 75 NWP forecasts of a multi-scheme ensemble prediction system.

Note: The percentiles here are physically based uncertainty bands and provide an overview of the uncertainty of the forecast.

Definition: A percentile indicats the value below which a given percentage of foreasts from the 75 available forecasts falls. E.g., the 20th percentile is the value below which 20% of the forecasts are found.

Forecast Game 1:

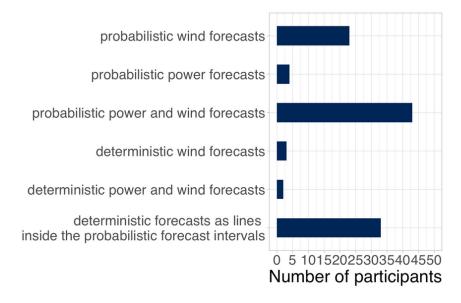
Offshore wind power decision making in extreme events

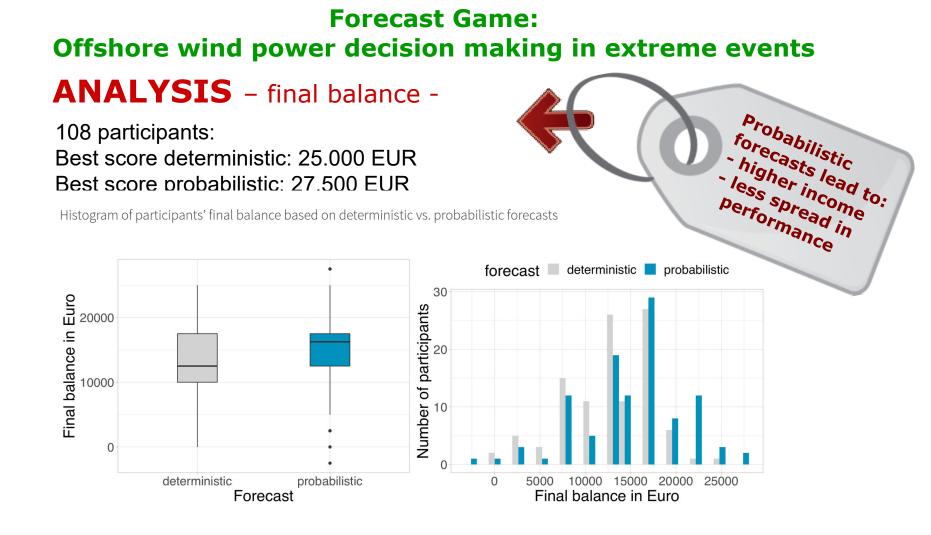
The cost profile

To reflect the costs of large and small errors we have defined a simplified cost function for the period, where high-speed shutdown (HSSD) can take place. Definitions:

- the wind farm is 100MW and the spot market price is 50 Eur/Mwh.
- balance costs are equivalent to spot market prices
- The cost function will only consider your choice for the hours, where the actual generation is full load or no generation

Trading	HSSD*	No HSSD*			
100%	-5.000	5.000			
50%	0	2.500			


* High-Speed Shutdown == cut-off winds


Note that trading **100% is a risky choice** that can both increase your income and loss. The more conservative **50% trading strategy eliminates the risk of a loss**, because **balance costs are equal to spot market prices** and **you can curtail the wind farm to avoid balance costs**.

Forecast Game 1: Offshore wind power decision making in extreme events ANALYSIS of Ouestions – preferred information -

Histogram of participants' preferred information

No one preferred to make decisions based on deterministic power forecast alone.

WP3.3: Meteorological Measurements and Instrumentation Standardization for Integration into Grid Codes

Results from 2 Workshops: ICEM 2019 & WIW 2019

Need for Industry Standard ?

→Need for best practices: BUT too strict standards are worse than non

- No standards leads to chaotic data management
- → Instrumentation without maintenance: data looses value
- → Maintenance schedules: once, twice per year ?
- Met instrumentation should be part of the turbine delivery/installation

Dissemination

- No consensus on how to accomplish
- ENSO-E is a potential body for dissemination
- Forecasting still undervalued. Need more forecasters in TSOs.
- Need simple advice to give operators, especially in the developing world

WP3.3: Meteorological Measurements and Instrumentation Standardization for Integration into Grid Codes

Results from 2 Workshops: ICEM 2019 & WIW 2019

- General Agreement that Standards/RPs are Needed
 - $\circ~$ Grid codes vary from region to region
 - Concern about adopting WMO or similar standards, which may be expensive overkill for grid code purposes
 - Should reference traceability to standards but be instrument agnostic
 - Could suggest required measurements by IPPs at time of commissioning
 - $\circ~$ Need education on importance of data quality
 - $\circ~$ Need to address site selection for instrumentation
 - Need to tailor reporting interval to forecast model input needs

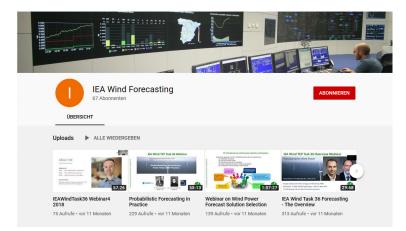
Task 36 Web Presence

Website

www.ieawindforecasting.dk

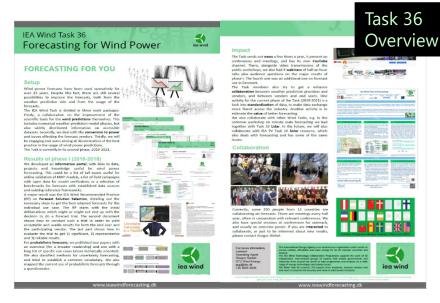
Source: Corinna Möhrlen, WEPROG

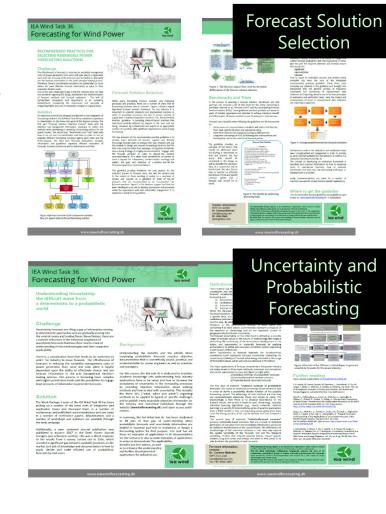
Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new intermational tenroly approx (162). Task on Forecasting for Wind Energy thes to organise international collaboration, among national weather centres with an interest and/or large projects on wind forecasts improvements (NDAA, DWD, ...), operational forecaster and forecastures).


The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible dataset. Secondly, we will be aiming at an international pre-standard (an EK Recommended Practice) on benchmarking and company paiving hover forecasts, including probabilistic tech Task. WakeBench. Thirdy, we will be engaging and users aiming at dissemination of the best practice in the usage of wind power forecasts.

Visit the IEA Wind task 36 YouTube channel

YouTube


https://www.youtube.com/channel/UCsP1rL outSXP0ECZKicczXg



Handouts

- 2-page handouts: quick overview of major results
- 3 currently available; can be obtained from:

http://www.ieawindforecasting.dk/publications/po sters-og-handouts

Thank you!

Gregor Giebel

Frederiksborgvej 399, 4000 Roskilde, DK grgi@dtu.dk

Will Shaw, PNNL, Richland (WA), USA will.shaw@pnnl.gov

The IEA Wind TCP agreement, also known as the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings, and publications of IEA Wind do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.

Annex

International Energy Agency History

The IEA was founded in 1974 to help countries co-ordinate a collective response to major disruptions in the supply of oil.

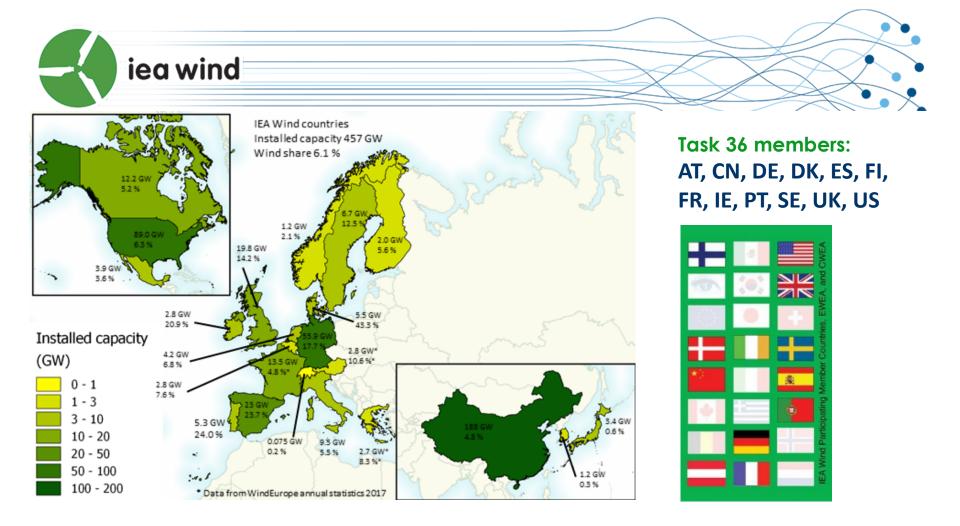


Image source: dpa

Specific Technology Collaboration **Programs: Bioenergy TCP Concentrated Solar Power** (SolarPACES TCP) **Geothermal TCP** Hydrogen TCP Hydropower TCP **Ocean Energy Systems** (OES TCP) **Photovoltaic Power** Systems (PVPS TCP) Solar Heating and Cooling (SHC TCP) Wind Energy Systems (Wind TCP)

See iea.org!

Task 11 Base Technology Exchange Task 19 Wind Energy in Cold Climates Task 29 Mexnext III: Analysis of Wind Tunnel Measurements and Improvements of Aerodynamic Models Task 30 Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) Task 39 Quiet Wind Turbine Technology Task 40 Downwind Turbines Task 41 Distributed Energy

Task 42 Wind Turbine Lifetime Extension

See ieawind.org!

Task 31 WAKEBENCH: Benchmarking Wind Farm Flow Models Task 32 LIDAR: Wind Lidar Systems for Wind Energy Deployment Task 36 Forecasting for Wind Energy Task 25 Design and Operation of Power Systems with Large Amounts of Wind Power Task 27 Small Wind Turbines in High Turbulence Sites Task 37 Wind Energy Systems Engineering Task 26 Cost of Wind Energy

Task 28 Social Acceptance of Wind Energy Project

Task 34 Working Together to Resolve the Environmental Effects of Wind Energy (WREN)

Short-term prediction of wind power, quickly explained

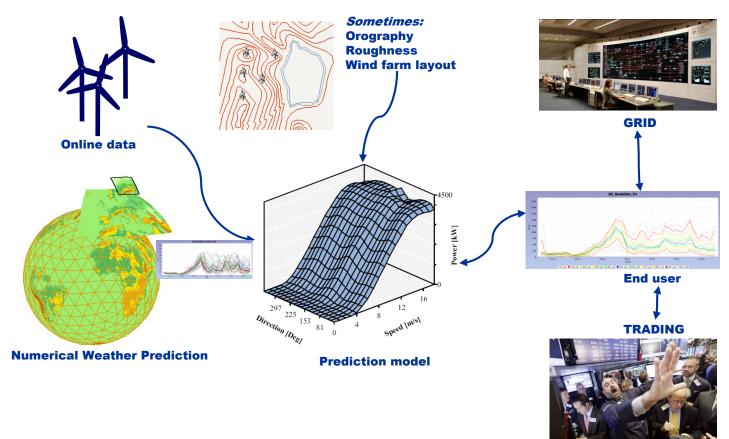


Image sources: DWD, WASP, Joensen/Nielsen/Madsen EWEC'97, Pittsburgh Post-Gazette, Red Electrica de España.

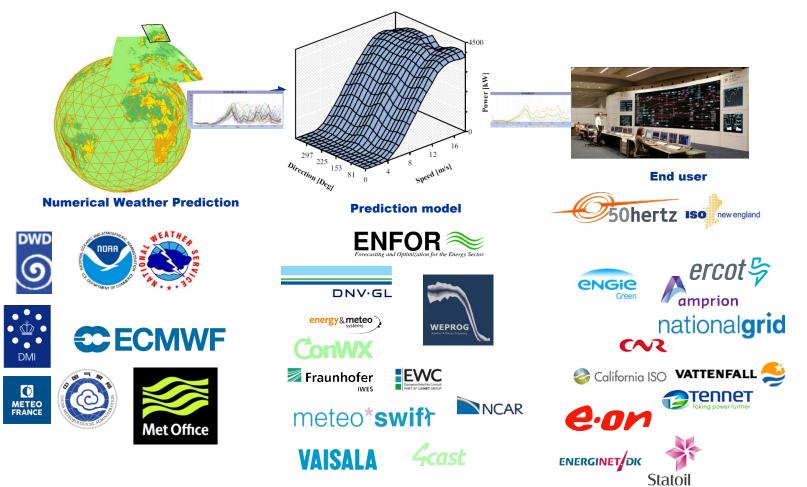
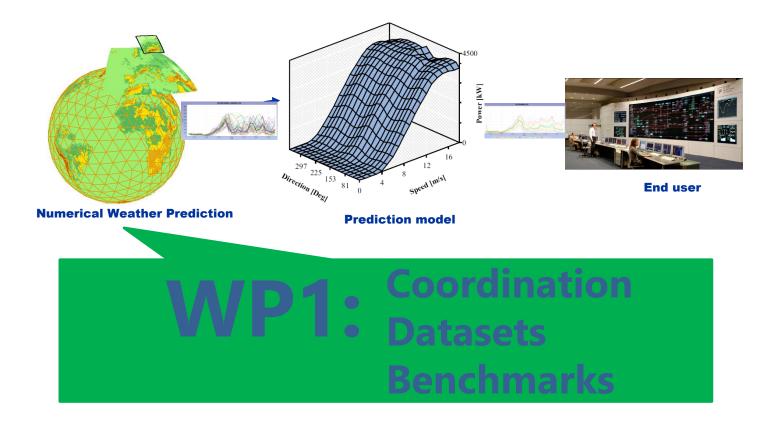



Image sources: DWD, WAsP, Joensen/Nielsen/Madsen EWEC'97, Red Electrica de España.

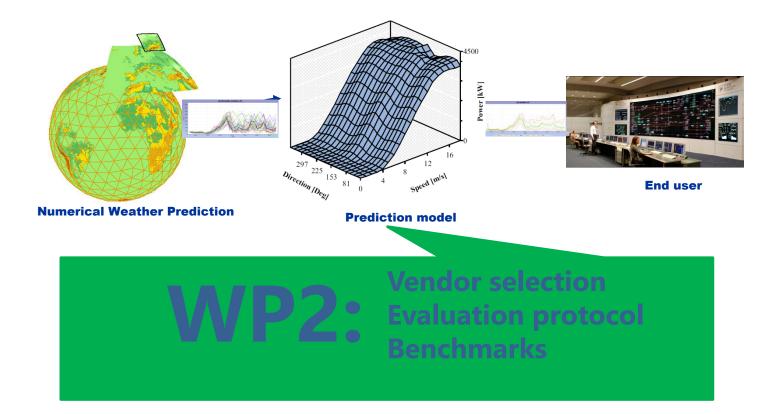
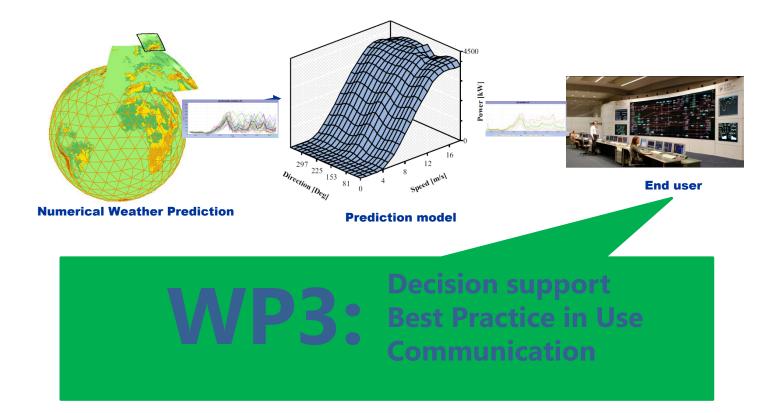



Image sources: DWD, WAsP, Joensen/Nielsen/Madsen EWEC'97, Red Electrica de España.

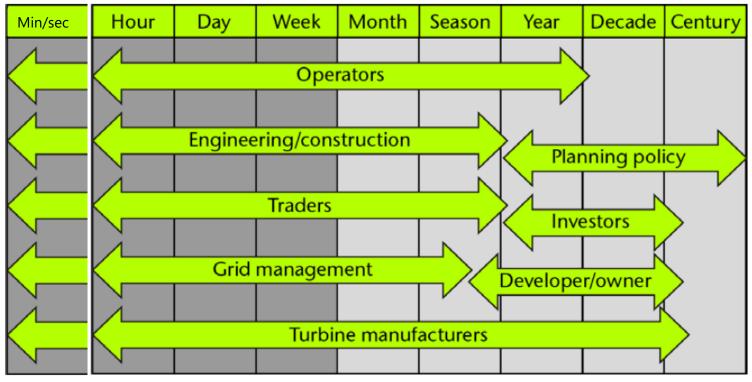
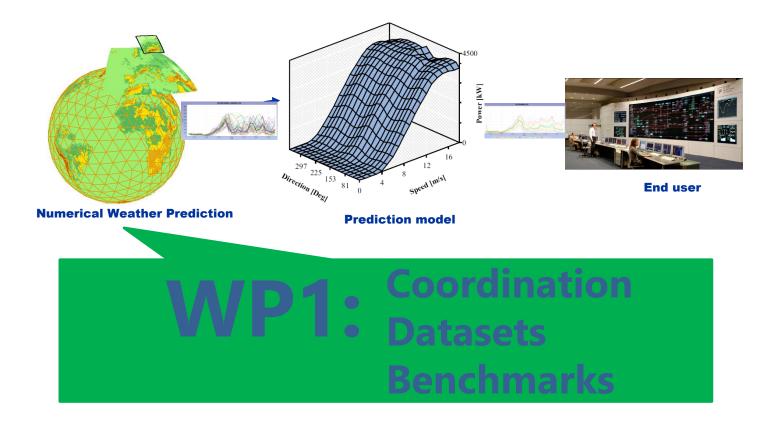


Figure 1: Timescales for the future of wind

© Crown copyright Met Office

Task 36 Phase 2: Work Package Scope

• WP 1: Global Coordination in Forecast Model Improvement


- $\circ~$ 1.1 Compile list of available wind data sets suitable for model evaluation
- \circ 1.2 Annually document field measurement programs & availability of data
- $_{\odot}~$ 1.3 Verify and validate NWP improvements with common data sets
- 1.4 Work with the NWP centers to include energy forecast metrics in evaluation of model upgrades

• WP 2: Power and Uncertainty Forecasting

- $\,\circ\,$ 2.1 Update the IEA Recommended Practice on Forecast Solution Selection
- 2.2 Uncover uncertainty origins & development through the whole modelling chain
- $_{\odot}~$ 2.3 Set-up and disseminate benchmark test cases and data sets
- $_{\odot}~$ 2.4 Collaborate with IEC on standardisation for forecast vendor-user interaction

• WP 3: Optimal Use of Forecasting Solutions

- \circ 3.1 Use of forecast uncertainties in the business practices
- \circ 3.2 Review existing/propose new best practices to quantify value of probabilistic forecasts.
- $_{\odot}~$ 3.3 Develop data requirements for real-time forecasting models for use in grid codes

WP1 Meteorology

Lead:

- Helmut Frank, DWD
- Will Shaw, PNNL

Mission:

To coordinate NWP development for wind speed & power forecasting

WP1 Meteorology

- Task 1.1: Compile list of **available data sets**, especially from tall towers.
- Task 1.2: Creation of annual reports documenting and announcing **field measurement programs** and availability of data.
- Task 1.3: Verify and Validate the improvements through a **common data set** to test model results upon and discuss at IEA Task meetings

WP1 Meteorology Current state

- V&V benchmark defined (US results to be published end of June, benchmark to be published on A2E site)
- Continuously updating the list, and work underway to use the collected data sets for Numerical Weather Prediction

SITE NAME	COORDINATES	ALTITUDE ABOVE MSL	TOWER HEIGHT	URL	CONTACT	DATA POLICY	DATA FORMAT	OBS. PERIOD	OTHER
Cabauw, NL	4.926° E, 51.97° N	-0.7 m	200 m	www.cesar-observatory.nl/index.php	henk.klein.baltink@knmi.nl	<u>Cesar data policy</u>	netCDF	2000-04-01 to previous month	
IJmuiden, NL	3.436° N, 52.848° E	0 m	92 m	www.meteomastijmuiden.nl/en /measurement-campaign/	verhoef@ecn.nl			since 2012	offshore North Sea
Risø, DK	12.088° E, 55.694° N	0 m	125 m	rodeo.dtu.dk/rodeo /ProjectOverview.aspx?&Project=5& Rnd=975820	Allan Vesth	Ask nicely		1995-11-20 -	Data measured since 1958; some months break in 2008.
Østerild, DK	8.88080° E, 57.04888° N	9 m	250 m	rodeo.dtu.dk/rodeo /ProjectOverview.aspx?&Project=179& Rnd=975820	Yoram Eisenberg	Ask nicely		2015-01-28 -	Two 250m masts in 4.3 km distance, both instrumented. Additionally, 7 smaller masts

Minute scale forecasting

- How to use Lidars, Radars or SCADA for very short term forecasts
- 30 sec 15 min.
- Workshop with Task 32 Lidars at Risø 12/13 June 2018.
- Slides available from workshop website.
- Complete workshop on YouTube.
- Summary paper in Energies journal.

Minute scale forecasting

- How to use Lidars, Rada $_{\equiv}$
- 30 sec 15 min.
- Workshop with Task 32 I
- Slides available from wo
- Complete workshop on `
- Summary paper in Enerc

IEA Wind Forecasting

SUBSCRIBE

HOME

Uploads PLAY ALL

Second day of the IEA Wind Task 32/36 Workshop on

44 views • Streamed 6 days ago

First day of the IEA Wind Task 32/36 Workshop on

162 views • Streamed 1 week ago

Teaser for IEA Wind Lidar

Forecasting Workshop

Streamed 1 week ago

93 views •

Workshop Experiences and Gaps in Wind Power

294 views • Streamed 2 years ago

Minute scale forecasting

- How to use Lidars, Radars or SCADA for very short 1
- 30 sec 15 min.
- Workshop with Task 32 Lidars at Risø 12/13 June 20
- Slides available from workshop website.
- Complete workshop on YouTube.
- Summary paper in Energies journal.

Article

Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36

Ines Würth ^{1,*}, Laura Valldecabres ², Elliot Simon ³⁽⁰⁾, Corinna Möhrlen ⁴⁽⁰⁾, Bahri Uzunoğlu ^{5,6}, Ciaran Gilbert ⁷⁽⁰⁾, Gregor Giebel ³⁽⁰⁾, David Schlipf ⁸⁽¹⁾ and Anton Kaifel ⁹⁽¹⁾

- Stuttgart Wind Energy, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
- ² ForWind-University of Oldenburg, Institute of Physics, Küpkersweg 70, 26129 Oldenburg, Germany; laura.valldecabres@forwind.de
- ³ DTU Wind Energy (Risø Campus), Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark; ellsim@dtu.dk (E.S.); grgi@dtu.dk (G.G.)
- 4 WEPROG, Willemoesgade 15B, 5610 Assens, Denmark; com@weprog.com
- ⁵ Department of Engineering Sciences, Division of Electricity, Uppsala University, The Ångström Laboratory, Box 534, 751 21 Uppsala, Sweden; bahriuzunoglu@computationalrenewables.com
- Department of Mathematics, Florida State University, Tallahassee, FL 32310, USA
- ⁷ Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George St, Glasgow G11XW, UK; ciaran.gilbert@strath.ac.uk
- ⁸ Wind Energy Technology Institute, Flensburg University of Applied Sciences, Kanzleistraße 91–93, 24943 Flensburg, Germany; david.schlipf@hs-flensburg.de
- ⁹ Zentrum f
 ür Sonnenenergie- und Wasserstoff-Forschung Baden-W
 ürttemberg, Meitnerstraße 1, 70563 Stuttgart, Germany; anton.kaifel@zsw-bw.de
- Correspondence: wuerth@ifb.uni-stuttgart.de; Tel.: +49-711-685-68285

Received: 14 December 2018; Accepted: 14 February 2019; Published: 21 February 2019

MDPI

Abstract: The demand for minute-scale forecasts of wind power is continuously increasing with the growing penetration of renewable energy into the power grid, as grid operators need to ensure grid stability in the presence of variable power generation. For this reason, IEA Wind Tasks 32 and 36 together organized a workshop on "Very Short-Term Forecasting of Wind Power" in 2018 to discuss different approaches for the implementation of minute-scale forecasts into the power industry. IEA Wind is an international platform for the research community and industry. Task 32 tries to identify and mitigate barriers to the use of lidars in wind energy applications, while IEA Wind Task 36 focuses on improving the value of wind energy forecasts to the wind energy industry. The workshop identified three applications that need minute-scale forecasts: (1) wind turbine and wind farm control, (2) power grid balancing, (3) energy trading and ancillary services. The forecasting horizons for these applications range from around 1s for turbine control to 60 min for energy market and grid control applications. The methods that can be applied to generate minute-scale forecasts rely on upstream data from remote sensing devices such as scanning lidars or radars, or are based on point measurements from met masts, turbines or profiling remote sensing devices. Upstream data needs to be propagated with advection models and point measurements can either be used in statistical time series models or assimilated into physical models. All methods have advantages but also shortcomings. The workshop's main conclusions were that there is a need for further investigations into the minute-scale forecasting methods for different use cases, and a cross-disciplinary exchange of different method experts should be established. Additionally, more efforts should be directed towards enhancing quality and reliability of the input measurement data.

Keywords: wind energy; minute-scale forecasting; forecasting horizon; Doppler lidar; Doppler radar; numerical weather prediction models

Task 1.2 List of Field Campaigns

Task 1.3 Common Test Data

Task 1.4 NWP Forecast Metrics

Meteorological data from tall towers The following list was compiled by IEA Wind Task 36 Forecasting for Wind Energy.

Another source is The Tall Tower Dataset at INDECIS Data portal. This is database of 222 tall towers around the world compiled with a common format (netCDF) and quality controlled. For some towers the latest data is from 2018. See The Tall Tower Dataset Technical Note for a description of the quality control, and a list of the towers in the appendix.

SITE NAME	COORDINATES	ALTITUDE ABOVE MSL	TOWER HEIGHT	URL	CONTACT	DATA POLICY	DATA FORMAT	OBS. PERIOD	OTHER
Cabauw, NL	4.926° E, 51.97° N	-0.7 m	200 m	www.cesar-observatory.nl/index.ohp	marcel.brinkenberg@knml.nl	<u>Cesar data policy</u>	netCDF	2000- 04-01 to previous month	
IJmuiden, NL	3.436° N, 52.848° E	0 m	92 m	www.windopzee.net/en/meteomast-iimuiden- mmij/	hans.verhoef@tno.nl. Registration for data	Ask <u>here for</u> permission		2012 - 2018	Offshore North Sea
Risø, DK	12.088° E, 55.694° N	0 m	125 m	rodeo.dtu.dtk/rodeo/ProjectOverview.aspx? &Project=5&Rnd=975820	Allan Vesth	Ask nicely	xlsx	1995- 11-20 -	Data measured since 1958; some months break in 2008.
Østerild, DK	8.88080° E, 57.04888° N	9 m	250 m	rodeo.dtu.dtk/rodeo/ProjectOverview.aspx? &Project=179&Rnd=975820	Yoram Eisenberg	Ask nicely	xlsx	2015- 01-28 -	Two 250m masts in 4.3 km distance, both instrumented. Additionally, 7 smaller masts up to turbine hub heights.
Taggen, SE	14.519° E, 55.8726° N	0 m	100 m	rodeo.dtu.dk/rodeo/ProjectOverview.aspx? &Project=174&Rnd=758000	Göran Loman			2014- 07-29 to	Offshore. Owned by

2017

Vattonfall

IEA WIND TASK 36

Helmut Frank (DWD), Irene Schicker (ZAMG), Will Shaw (PNNL)

Field measurement programs - Introduction

In IEA Wind Task 36 no experiments are made to compare Numerical Weather Prediction (NWP) models with observations. However, there are work packages trying to foster this comparison. Therefore, we compile a list of experiments which are particularly relevant for wind energy forecasting. We try to give a short description of the experiments and some information on the data

List of major field experiments in different years

2021/2022:

January 10, 2020

AWAKEN (USA)

2020

FESSTVaL (Germany)

2019:

NEWA - Alaiz Experiment (ALEX17) (Spain)

2018

NEWA - Perdigão Experiment (Portugal)

2017:

- WFIP 2
- NEWA Ferry Lidar Experiment (Baltic Sea)
- WIPAF (North Sea, Germany)

2016

- WFIP2 (USA)
- NEWA The coastal experiment RUNE (Denmark)

Co-lead

Long list of experiments, linking to a larger description. Includes older experiments with open data.

List of major field experiments in different vears

2021/2022

AWAKEN (USA)

2020

- FESSTVaL (Germany)
- 2019:
 - NEWA Alaiz Experiment (ALEX17) (Spain)

2018:

NEWA - Perdigão Experiment (Portugal)

2017:

- WFIP 2
- NEWA Ferry Lidar Experiment (Baltic Sea)
- WIPAF (North Sea, Germany)

2016:

- WFIP2 (USA)
- NEWA The coastal experiment RUNE (Denmark)
- NEWA Østerild: Flow over heterogeneous roughness (Denmark)
- · NEWA Hornamossen: flow over forested rolling hills (Sweden
- NEWA Kassel forested hill experiment (Germany
- OBLEX-F1 Offshore Boundary-Layer EXperiment at Fino1 (North Sea)
- WIPAFF (North Sea, Germany)

2015:

- WFIP2 (USA)
- OBLEX-F1 Offshore Boundary-Layer EXperiment at Fino1 (North Sea)
- MATERHORN-Fog 2 (USA)

2014:

ALNAP (Alps)

2013:

MATERHORN-Spring (USA)

2012 and older:

MATERHORN-Fall (USA)

Major field experiments AWAKEN

The American Wake Experiment (AWAKEN) is a landmark collaborative international wake observation and validation campaign. Wake interactions are among the least understood and most impactful physical interactions in wind plants today, leading to unexpected power losses and increased operations and maintenance costs. The AWAKEN campaign is designed to gather observational data to address the most pressing science questions about wind turbine wake interactions and aerodynamics and to further understand wake behavior and validate wind plant models. Simultaneously, the AWAKEN campaign will also focus on testing of wind farm control strategies that have been shown to increase wind plant power production. Leveraging the expertise and resources of a large body of National Laboratories, academic institutions, and industry partners will lead to improved wind farm layout with greater power production and improved reliability, ultimately leading to lower wind energy costs.

Objectives

Home > Project list

f 🌶 in

Wind power prediction project list

This list shows a large number of (mostly publically funded) research projects in short-term forecasting of wind power. The list is incomplete, as the emphasis was a) on current projects, and b) on projects collected from the Task participants. Even so, the list contains research projects from the last two decades worth 46 ME, with 32 ME public funding, hough not all of this can be attributed to forecasting (e.g. the IRP Wind or RAVE projects).

If you have additions or comments, please send them to the operating agent, Gregor Giebel (grgi /at/ dtu.dk).

Country	Project acronym	Full title	Sponsor	Total / Funded budget	Start - end date	Participants (IEA Task 36 members in bold)
DE	e-TWINS	Verbundvorhaben: e-TWINS ' Ganzheitliche digitale Zwillingstechnologie für das Energiesystem	BMWi (Bundesministerium für Wirtschaft und Energie)	1.96 M€ / 1.96 M€	Jan 2020 - Dec 2022	TU München Windenergie, Hochschule München, ZSW , Mesh Engineering
EU	Smart4RES	Next Generation Modelling and Forecasting of Variable Renewable Generation for Large-scale Integration in Energy Systems and Markets	EU Horizon2020	4 M€ / 4 M€	1 Nov 2019 - 30 Apr 2023	Armines, DTU, INESC TEC, EDP, Meteo- France, emsys, DNV GL, Whiffle, Dowel, ICCS, HEDNO, DLR
EU	EoCoE II	Energy Oriented Center of Excellence : toward exascale for energy	EU Horizon2020	9.2M€	1.1.2019- 31.12.2021	18 teams in 7 countries including Fraunhofer IEE
DK	[link]	IEA Wind Task 36 Phase II Danish Consortium	EUDP (national Danish funding)	500k€ / 300k€	1 Jan 2019 - 31 Dec 2021	DTU, ConWX, ENFOR, DNV, WEPROG, Ea Energianalyse, Energinet

IEA WIND TASK		PARTNERS	PUBLICATIO			WIND iea wir	nd	us	WFIP 2 (alternate lini)	Second Wind Forecast Improvement Project	U.S. Department of Energy	\$17M USD / \$17M USD	1 Oct 2015 - 30 Sep 2018	Vaisala, NOAA/ESRL, NOAA/ARL, NOAA/NWS, Argonne National Laboratory, Lawrence	ne	SOLAR		Savanan ministry for economy, EU infrastructure fund "Investments for the future"	10 ME / 6.3 ME	2012 - 2018	for Applied Energy Research (ZAE), 3 Fraunhofer institutes, 9 other partners and WEPROG											
	Wind power prediction project list This list above a large number of (mostly publicity funded) research projects in short-term forecasting of wind power. The first incomplete, as the emphasis was a) on comer project, and b) or projects collected from the Tack				FIL	EoCoE	Energy criented	EU Horizon2020	~551061	Oct 2015 – Sep	Livermore National Laboratory, NREL, PNNL 21 teams in 8	т	P1	Renewable Energy Dispatch Tools	China Electric Power Research Institute (CEPRI); State Grid Corporation of China (SGCC)	2 M€/-	1 Jul 2013 - 31 Dec 2016	R&D NESTER (PT), REN (PT), CEPRI (CN)														
	participants. Even so, the for contains research projects from the last two decades worth 46 Me, with 32 MP public funding, though not all of this can be attributed to forecasting (e.g. the IRP Wind or RAVE projects).					LU EOCOE		Centre of Excellence		~1.4 ME	2018	countries, lead by Maison de la Simulation,	ж	X-WIWa	Extreme winds and waves for		5.95 MDKK / 5.4 MDKK	1 Jun 2013 - 2017	DTU Wind Energy, DHI, Uni													
	Gregor Glebel (grg													including Fraunhofer W/ES			offshore turbines				Research, Bergen University											
	Country	Project acronym		Sponsor	Total / Funded budget	Start - end date	Participants (IEA Taok 36 members in bold)	EV	IRP Wind	Integrated EU R&D efforts on wind energy	EU 7th Framework Programme (Project ID:	~ 10 M€ / ~10 M€	Mar 2014 – Feb 2018	24 European teams (participants of the European	E	EWeLINE	Erstellung innovativer Wetter- und	Bundesministerium für Wirtschaft und Energie	7.06 M€ / 6.5 M€	Dec 2012 - Feb 2017	Fraunhofer IWES, DWD, Amprion, TenneT, 50Hertz											
	DE	e-TWINS ' (Bundesministeria	(Bundesministeriun für Wirtschaft und Energie)	1.96 M€ / 1.96 n M€	Jan 2020 - Dec 2022	TU München Windenergie, Hochschule München, ZSW, Mosh Engineering				(Project ID: 809795)						Leistungsprognos für die Netzintegration wetterabhängiger Energieträger																
	EU	Smart4RES	Energiesystem Next Generation Modelling and	EU Horizon2020	4 ME / 4 ME	1 Nov 2019 - 30 Apr 2023	Armines, DTU, INESC TEC,							Wind Energy) lead by DTU Wind Energy	E	PerduS	Photovoltaikertrag: durch Saharastaub	(Bundesministeriun für Wirtschaft und Energie)	962 kE / 952 kE	Nov 2012 - Feb 2017	Deutscher Wetterdienst, KIT, meteocontrol											
			Forecasting of Variable Renewable Ganaration for Large-scale Integration in Energy Systems				EDP, Meteo- France, emsys, DNV GL, Whiffle, Dowel, ICCS, HEDNO, DLR	FRIDK	PriME HD-REStorecast	Innovative probabilistic methods for energy system technology	Ministry of Education and Research (BMBF)	~1 MC / ~1 MC	Jan 2015 – Dec 2017	University Kassel, FH WES, EnerginetDK, Netze BW	U	SafeWind	Multi-scale data assimilation, advanced wind modeling and forecasting with emphasis to	EU 7th Framework Programme (FP7-ENERGY, Project ID: 213740)	5.6 ME/3.98 ME	1 Sep 2008 - 31 Aug 2012	Armines, DTU, Risø, Uni Oldenburg, ENFOR, Overspeed, CFNFR.											
	EU	EoCoE II	and Markets Energy Oriented Conter of Excellence :	EU Horizon2020	9.2ME	1.1.2019- 31.12.2021	18 teams in 7 countries	FRIDK	HD-REStorecast	High-dimensional dynamical models for improving renewable	EDF	116 KE / 65 KE	Nov 2015 -	DTU Elektro, EDF			extreme weather situations for a notigracon	213140)			EnergineLdk and 13 other vedy											
		toward exascale for energy	EUDP (national	500kE / 300kE	1 Jan 2019 - 31	Including Fraunhofer IEE DTU, ConWX,			energy forecasting at distributed locations					ж	DEWEPS	Development and Evaluation of a new wind profile theory	Danish PSO Fund	480 kWE / 180 kWE	1 Apr 2009 - 31 Dec 2011	WEPROG												
			Danish Consortum	Danish Consortium	Danish Consortium	Danish Consortium	II Danish funding)	Danish funding)		Dec 2021	ENFOR, DNV, WEPROG, Ea Energianalyse, Energinet	DE	VORKAST	Optimisation of design and operational	Federal Ministry for Economics and Technology	1 ME / 1 ME	1 Sep 2014 – 31 Oct 2017	ZSW - Center for Solar Energy and Hydrogen			with an Ensemble Prediction System											
	NO	NowWind	impact on the Danish power system Nowcesting for wind energy production - an	EUDP) The Research Council of Norway	12 MNOK / 6.3 MNOK (1.3 / 0.7 ME)	2016 - 2019	Vattenfall MET Norway, Windsim A.S., Vestas Wind			management for hybrid power plants and energy storage technologies by means of wind and PV power				Research Baden- Württemberg (Project lead) SWE – Stuttgart Wind Energy @ Institute of	iU	ANEMOS.plus	Advanced Tools for the Management of Electricity Grids with Large-Scale Wind Generation	EU 6th Framework Programme (Project ID: 38592)	6.7 ME / 2.6 ME	1 Jan 2008 - 30 Jun 2011	Armines, DTU, Risø, ENFOR, Overspeed, CENER, INESC, and 14 other partners											
			integrated modelling approach	(ENERGD)			Systems AS, TranderEnergi AS, Kjeller Vindteknikk AS			nowcasting (Optimierung der Auslegung und Betriebsführung				Aircraft Design, University of Stuttgart)E	RWE	Research at Alpha Ventus - Grid Integration of offshore wind	BMU, German ministry for the Environment	5 ME (50-80% funded)	2008 - 2011	Fraunhofer IWES, Forwind - University Oldenburg,											
	FR FOREWER	FR FOREWER	FR FOREWER	FR FOREWE	FR	pré éva	FR FOREWER	FR FOREWER	Modélisation, prévision et évaluation des risques pour la	Agence Nationale de la Recherche (French)	2160 kmE / 481 km	E 1 Oct 2014 - 31 Mar 2019	Université Paris 7, ENGIE Green, Ecole Polytechnique,	DE	SIMRT GRID SOLAR		Bavarian ministry for economy, EU intrastructure fund	10 ME / 6.3 ME	2012 - 2018	Bavarian Center for Applied Energy Research (ZAE),			farms				Deutscher Wetterdienst, WEPROG					
	FR	meteo"swift	production d'énergie éolienne Development of	FEDER EU	~1 M€/~500 KE	Mar 2016 - Mar	EDF, RTE, CNRS				"investments for the future"			3 Fraunhofer institutes, 9 other partners and WEPROG	ж	HREnsembleHR	High-resolution Ensemble for Horns Reef	Danish PSO Fund (Contract No. 2006-1-6387)	700 ké / 400 ké	1 Apr 2006 - 31 Dec 2009	WEPROG, DTU IMM, DTU Risø, Fraunhofer IWES, DONG Energy,											
					win fore bas ada	in to av	a short-term wind power forecasting tool based on adaptive multi-agent	funding & Occitania French region		2018	National Weather Research Cenh (part of Météo- France), Toulouse	PT	P1	Renewable Energy Dispatch Tools	China Electric Power Research Institute (CEPRI); State Grid Corporation of China (SGCC)	2 ME / -	1 Jul 2013 - 31 Dec 2016	R&D NESTER (PT), REN (PT), CEPRI (CN)	U	POWWOW	Prediction of Waves, Wakes and Offshore	EU 6h Framework Programme (Projec	1.05 ME/ 1.05 ME 1	1 Oct 2005 - 30 Mar 2009	Vattenfall Rise, DTU, Armines, CENER, Uni							
			systems and ensemble weather forecasts									Co Sc Re	Computer Science Research Institute	DK	X-WIWa	Extreme winds and waves for offshore turbines	ForskEL (PSO)	5.96 MDKK / 5.4 MDKK	1 Jun 2013 - 2017	DTU Wind Energy, DHI, Uni Research,			Wind	ID 19898)			Oldenburg, Fraunhofer IWES, and 8 other partners including UFPE					
	36	DK (ink)	DK	36 Forecast Danish	36 Forect		(link)		3	3		3	36 Fore	36 Forecasting Danisl	EUDP (nationally Danish)	2.72 MDKK / 1.83 MDKK	Jan 2016 - Dec 2018	Energy, DTU Elektro, DTU	DE	EWeLINE	Erstellung	Rundasministaria	im 7.06 M€/6.5 M€	Dec 2012 - Feb	Bergen University Fraunhofer	EU	ANEMOS	Development of a next generation	EU 5th	4.3 M€/2.5 M€	1 Oct 2002 - 30 Sep 2006	(BR) Armines, DTU, Uni Oldenburg,
			Consortium				Compute, DMI, ENFOR, DNV GL WEPROG, Vestas, Energinet.dk			innovativer Wetter- und Leistungsprogno für die Netzintegration	für Wirtschaft und Energie semodelle		2017	IWES, DWD, Amprion, TenneT, 50Hertz			a next generation wind resource forecasting system for the large-scale integration of	Programme (Projec ID: ENK5-CT- 2002-00665)	t	Ceb Sono	CENER, MSA, and 16 others from TSOs to meteorologists											
	US		IEA Task on Development & Use of	Department of Energy USA	\$22,732	Sep 2016 - Sep 2017	NREL			wetterabhängiger Energieträger							onshore and offshore wind farms															
			Orababilistic					μE	PerduS	Photovoltaikertra;	gsrædulidibn	962 KE / 962 KE	Nov 2012 - Feb	Deutscher																		

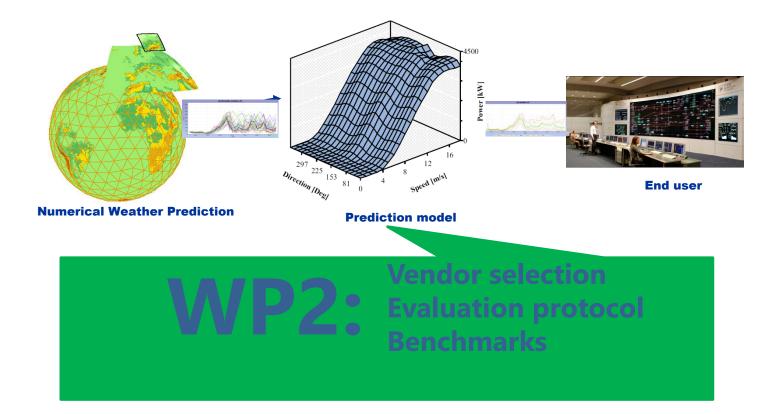


Image sources: DWD, WAsP, Joensen/Nielsen/Madsen EWEC'97, Red Electrica de España.

WP2 Benchmarks

Lead: Caroline Draxl, NREL John Zack, UL Pierre Pinson, DTU Elektro

IEA WIND TASK 36

)
INFORMATION PORTAL	WORK PACKAGES	PARTNERS	PUBLI	CATIONS	MEMBER SIT	IEA	iea wi WIND	nd
WP1 Weather Prediction Imp	rovements WP2 E	Benchmarks	WP3 Optimal	Use of Fore	casting Solutions			
Home > Work packages > WP2 Benchmarks > Task 2.3 Test Cases								
Task 2.1 Forecast Solution Selection	Task 2.3	Test Cases	5			Co-lead		
Task 2.2 Uncertainty	Set-up and diss	emination of benchm	ark test cases	s and data set	S.		<u>Pierre Pinson</u> Professor	
Task 2.3 Test Cases	•						DTU Electrical Engineering	
Task 2.4 Standardisation	Aim: Set	-up and dissemination	on of benchma	irks.			+45 45 25 35 41	
		artners: DTU Elektro, DTU Wind Energy, EDF, INESC TEC, martwatt, Prewind, PNNL.						
	Cinativa	a, r ronnia, r 1442.						
	NAME	TYPE OF DATA	AREA	PERIOD	TEMPORAL			

NAME	TYPE OF DATA	AREA	PERIOD	TEMPORAL
<u>RE-Europe</u>	Simulated aggregated generation and +1 to +91 hour forecasts for 1494 European regions based on ECMWF and COSMO analysis and ECMWF forecast data	Europe	2012-2014	1 hour
NREL WIND Toolkit	Simulated generation and 1, 4, 6, and 24- hour wind and power forecasts for 126000 US sites based on WRF	US	2007-2013	5 min

NREL Western and Eastern Wind Integration data sets	Simulated generation for 1326 (Eastern) + 32043 (Western) US sites based on MASS and WRF. For Eastern data set also 4 hour, 6 hour and day ahead forecasts	US	2004-2006	10 min
GEFCom 2012	Observed generation and +1 to +48 hour ECMWF wind forecasts for 7 wind farms	unknown	2009-2012	1 hour
GEFCom 2014	Observed generation and +1 to +48 hour ECMWF wind forecasts for 7 wind farms	unknown	2009-2012	1 hour
AEMO	Generation data from various Australian wind farms	Australia	2005-	5 min
La Haute Borne wind farm data	Many SCADA data from the 4 turbines of the La Haute Borne wind farm, ENGE's first open data wind farm.	Southwest of Nancy, France	2009-	10 min

Additional information:

RE-Europe:

Full data set can be downloaded as zip-file. Generation signals and forecasts and meta data on location and aggregation are stored in csv-files. Additional to wind power data the data set includes solar generation and power load data. More information can be found on <u>https://zenodo.org/record</u> /<u>35177#.WomNAccIFmB</u>. Data policy: <u>Creative Commons Attribution</u>: <u>NonCommercial 4.0</u>.

NREL WIND Toolkit:

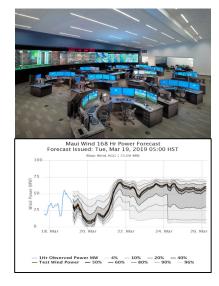
Information and download links can be found on https://www.nrel.gow/grid/wind-integration-data.html. Data can be downloaded via the NREL Wind Prospector

Work Package 2.1:

Recommended Practice for Optimal Forecast Solution Selection Slides by John Zack and Corinna Möhrlen

The Problem and an Approach for a Solution

Documented Benefits:


 Use of forecasts can lower variable generation integration costs while maintaining the required high system reliability

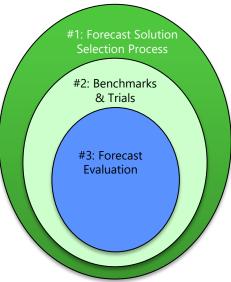
• Problem:

- A substantial amount of value is not realized due to the use of non-optimal forecast solutions by users
 - Wrong forecast performance objective(s)
 - Poorly designed and executed benchmarks/trials
 - Use of non-optimal evaluation metrics

Potential Mitigation:

 IEA Wind Task 36 – Work Package 2 experts formulated a set of "best practices" for selecting and running wind forecasting solutions

Overview of IEA-WIND Recommended Practice for the Selection of Wind Power Forecasting Solutions (WP 2.1)



Target: Compile guidance for the implementation of renewable energy forecasting into system operation

Approach: Develop a set of 3 documents that specify IEA Wind Recommended Practices for:

- **1. Forecast Solution Selection Process**
- 2. Design and Execution of Benchmarks and Trials
- 3. Evaluation of Forecasts and Forecast Solutions
- Current Status: Released

 Available Online: http://www.ieawindforecasting.dk/publications/recommendedpractice

IEA Best Practice Recommendations for the Selection of a Wind Forecasting Solution: Set of 3 Documents

iea wind	iea wind	iea wind
EXPERT GROUP REPORT ON RECOMMENDED PRACTICES FOR SELECTING RENEWABLE POWER FORECASTING SOLUTIONS	EXPERT GROUP REPORT ON IEA RECOMMENDED PRACTICE FOR SELECTING RENEWABLE POWER FORECASTING SOLUTIONS Part 2: DESIGNING AND EXECUTING FORECASTING BENCHMARKS AND TRIALS	EXPERT GROUP REPORT ON RECOMMENDED PRACTICES FOR SELECTING RENEWABLE POWER FORECASTING SOLUTIONS
Part 1: FORECAST SOLUTION SELECTION PROCESS 1. EDITION 2019	EDITION 2019 Submitted to the Executive Committee of the International Energy Agency Implementing Agreement on 1 ^{et} August 2019	Part 3: Evaluation of Forecasts and Forecast Solutions 1. EDITION 2019
Submitted to the Executive Committee of the International Energy Agneementing Agreement on 13 th August 2019		Submitted to the Executive Committee of the International Energy Agency Implementing Agreement on 13 th August 2019
 Part 1: Selection of an Optimal Forecast Solution 	 Part 2: Design and Execution of Benchmarks and Trials 	 Part 3: Evaluation of Forecasts and Forecast Solutions

Part 1: Forecast Solution Selection Process:

- **Key Concept**: the "best" practical forecast solution process for an application depends on the user's access to knowledge, labor resources and time
 - Conducting a performance trial may not profile useful guidance if not well designed and executed
 - Alternative approaches to trials may be more effective

• Key Guidance:

- Decision Support Tool: guidance to determine the best approach for a specific situation
- Check lists of information to gather for trials, RFP, RFI

IEA Task 36 WP2.1 FORECAST SOLUTION SELECTION AND TRIAL/BENCHMARK EXECT

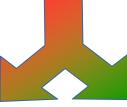
- <u>Content Examples:</u>
 - Decision Support Tool to find best path for appropriate solution
 - Summary trial/benchmark checklist for all end-users
 - Appendices with
 - meta-, historical-, and real time-data details to make communication more efficient
 - Forecast file format sample
 - Questions to ask in RFI/RFP
 - Detailed steps during the three main phases of a trial: preparation, during, and post-trial

--Preparation---Preparation--Determine outcomes / objectives Consult expert with trial experience Establish timeline and winning criteria Decide on live or retrospective trial Gather metadata (use IEA checklist spreadsheet) Determine if adequately resourced to carry out Obtain historical adata Invite Forecast Service Providers Distribute historical and meta-data Allow two weeks Q&A prior to trail start Begin Trial

--During Trial--Develop validation report Check interim results Provide interim results (if no live data being provided) End Trial

--Post Trial--Provide final results Notify winner(s) Contract with winner(s) Start Service

Vind	Power	Forecast	Trial	Check

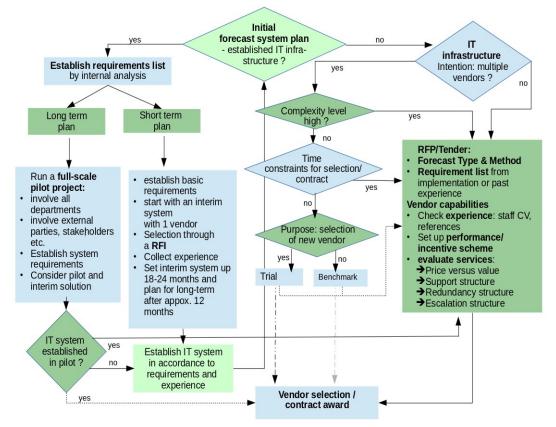

Purpose: To efficiently set up site-specific wind power forecast, this checklist should be filled out as best as it could with available information. This will expedite forecast configuration and save back and forth communication time. Please note the comments in the corner of the cells.

4		
5	QUESTIONS	ANSWERS
6	Metadata Checklist:	
7	Name(s) of sites as needed in datafile:	Acme Wind Farm
	Latitude and longitude coordinates of sites? Attaching or copying	
	the turbine as-built locations to another worksheet will be	
8	sufficient here.	42.3523, -121.3282
9	Nameplate capacity of each site:	62.5 MW
10	Will a web tool be needed?	Yes
11	Turbine make/model/rating:	GE:GE2.5-100
12	Number of turbines:	25
13	Hub height of turbines?	95 meters
14	Please provide a suitable plant power curve	attached
15		
16	Value of forecast questions:	
17	Which variables will be forecasted and validated?	Power (MW)
18	Which forecast horizon(s) are being verified?	24-48 hours
19	Which metrics are being used to gage performance?	RMSE
	If head-to-head trial competition, what are the criteria for determining	
20	winning forecast provider?	Lowest RMSE and price
4	WIND Sample Forecast File +	

Forecast Trial Checklist

Key Elements of Recommended Practices for Forecast Solution Selection

- Selection/update of forecasting solutions in which Quality, Reliability and Price are in perfect harmony is usually a complex task
- Forecast IT infrastructure and solution architecture need careful considerations

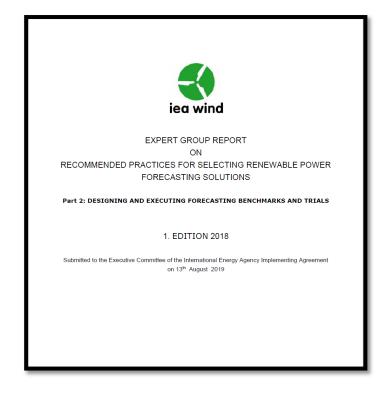


- →provides decision support for basic elements common to all forecast solutions
- →encourages end-users to analyze their own situation
- →encourages users to request a forecasting solution that fits their own purposes

- \rightarrow discourages to just
 - "do what everybody else is doing"
- → discourages seeking a simple or cheap solution if the application is complex

Decision Support Tool for the Process of Selecting a Forecasting Solution

 Provides guidance and practical examples for:


- the formulation of a process to select an optimal forecasting solution
- analysis and formulation of forecasting requirements
- assessing vendor
 capabilities with and
 without trials

Part 2: Designing and Executing Forecasting Benchmarks and Trials

- **Key Concept**: a benchmark or trial must be carefully designed, executed and evaluated in order to produce meaningful information that can be used for effective decision-making
 - Many decisions are based on "noise" (random results) produced by benchmarks/trials

Key Guidance:

- Best practices for the design, execution and evaluation of trial/benchmarks
- o Examples of "pitfalls to avoid"

The 3 Phases of a Benchmarking Process: #1

Preparation Phase:

determining the scope and focus of the performance evaluation

Forecast horizons (look-ahead time periods)

Available historical data

Appropriate length of benchmark

Are conditions during benchmark representative?

Meaningful evaluation metrics

Think of what factors are most important as in any big or long-term purchase (e.g. home, car, forecasting system)?

The 3 Phases of a Benchmarking Process: #2

Execution Phase: ensuring a fair and representative process

- Data monitoring (forecasts and observations)
- For fairness and transparency: test accuracy and delivery performance.
- Monitor forecast receipt (reliability)
- Sample should be normalized (all forecasters evaluated for same period & locations)
- Develop and refine the evaluation scripts

The 3 Phases of a Benchmarking Process: #3

Analysis Phase:

compiling a comprehensive and relevant assessment

Critical Evaluation Criteria:

- Application-relevant accuracy of the forecasts
- Performance in the timely delivery of forecasts
- $_{\odot}\,$ Ease of working with the forecast provider

Examples of Benchmarking Pitfalls to Avoid

Poor communication with forecast providers

- $\circ\;$ All providers not provided with the same set of information
- o Incumbent providers having an information advantage by default

Unreliable comparisons

- $\circ\;$ Forecasts for different time periods are compared (evaluated)
- Forecasts for different facilities/portfolios are compared (evaluated)

• Bad design

- \circ Short trials in unrepresentative periods (e.g. 1 month in a low wind season)
- $\circ~$ No on-site data given to forecast providers
- $\circ~$ Intra-day forecasts made from once-a-day target-site data update

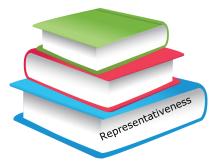
• Details missing or not communicated to providers

- $\circ~$ No documentation of daylight savings time changes in data files
- $\circ\;$ No specification of whether data time stamp represents interval beginning or ending
- $\circ~$ No documentation of plant capacity changes in historical data or trial period
- o Curtailment and maintenance outages not provided

Opportunities for "cheating" not eliminated

- No penalty for missing forecasts (possible no submission in difficult situations)
- o Forecast delivery times not enforced (could submit later forecasts)

Part 3: Evaluation of Forecasts and Forecast Solutions


- **Key Concept**: all forecast performance evaluations have a degree of uncertainty that is a composite from a number of factors
 - Management of evaluation uncertainty should be a priority in order to maximize signal/noise
 - Poor management of uncertainty may result in evaluation information being dominated by noise

Key Guidance:

- \circ Three key attributes of an evaluation process
- o Factors and issues associated with each attribute
- Approaches to minimize evaluation uncertainty

ieg wind
EXPERT GROUP REPORT
ON
RECOMMENDED PRACTICES FOR SELECTING RENEWABLE POWER FORECASTING SOLUTIONS
Part 3: Evaluation of Forecasts and Forecast Solutions
1. EDITION 2018
To be Submitted to the Executive Committee of the International Energy Agency Implementing Agreement on 1 st March 2019

Three Critical Factors to Achieve a Meaningful Trial: #1

Representativeness: relationship between the results of a forecast performance evaluation and the performance that is ultimately obtained in the operational use of a forecast solution

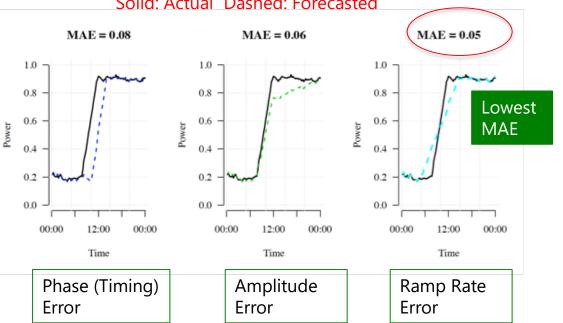
- Statistically meaningful evaluation sample size and composition
- High quality data from the forecast target sites
- Formulation and enforcement of rules governing the submission of forecasts ("fairness")
- Availability of a complete and consistent set of evaluation procedure information to all evaluation participants ("transparency")

Three Critical Factors to Achieve a Meaningful Trial: #2

Significance: ability to differentiate between performance differences that are due to noise in the evaluation process and those that are due to meaningful differences in skill among forecast solutions

- Minimize noise in the evaluation sample (i.e. lower the uncertainty)
- Quantify the uncertainty in performance metrics
- Consider performance uncertainty bands when evaluating performance differences among candidate solutions

Three Critical Factors to Achieve a Meaningful Trial: #3


Relevance: degree of alignment between the evaluation metrics used for an evaluation and the true sensitivity of a user's application(s) to forecast error

- Ideal Approach: formulate a cost function that transforms forecast error to the application-related consequences of those errors (often very difficult)
- **Practical Alternative**: use a matrix of performance metrics that measure a range of forecast performance attributes
- When using more than one relevant metric:
 - Remember: ONE forecast can NOT be optimal for more than one metric;
 Use separate forecast optimized for each metric if that attribute of performance is critical
- When employing multiple ("N") forecast solutions: choose the set that provides the best composite performance NOT the "N" best performing solutions

Forecast Performance Perception and Optimization:

Example of the Impact of Metric Selection Solid: Actual Dashed: Forecasted

- Ramp forecast example
- Typical case: user is interested in forecasting occurrence and attributes of ramp events for operational decisionmaking
- User evaluates forecast with a widely-used global metric such as MAE
- Provider optimizes to the user's selected metric

Verifying a ramp forecast with MAE/RMSE brings the forecast service provider into a dilemma: Tuning of forecast can (1) create good MAE scores or (2) serve the customer's needs \rightarrow NOT BOTH

Key Points of Part 3

- All performance evaluations of potential or ongoing forecast solutions have a degree of uncertainty
- The uncertainty is associated with three attributes of the performance evaluation process evaluation process: (1) representativeness, (2) significance and (3) relevance
- A carefully designed and implemented evaluation process that considers the key issues in each of these three attributes can minimize the uncertainty and yield the most meaningful evaluation results
- A disregard of these issues is likely to lead to uncertainty and/or decisions based on unrepresentative information

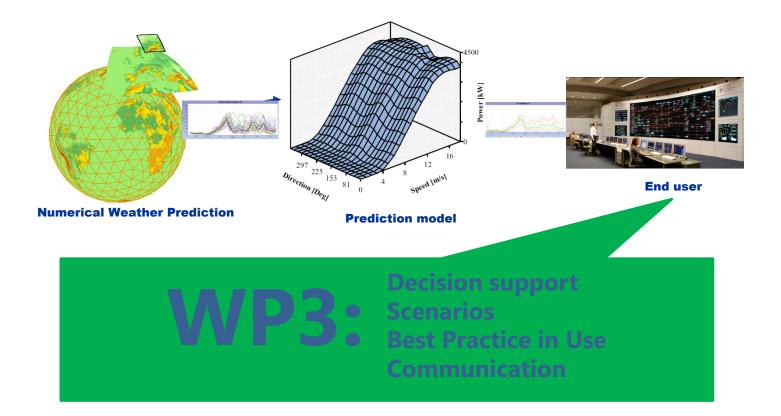


Image sources: DWD, WAsP, Joensen/Nielsen/Madsen EWEC'97, Red Electrica de España.

WP3 Advanced Usage

Lead: Corinna Möhrlen, WEPROG Ricardo Bessa, INESC TEC George Kariniotakis, Mines ParisTech

15th Int. Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, Vienna, 15 - 17 November, 2016

15th Int. Workshop on Large-Scale Integration of Wind Power into Power Systems, Vienna, Nov. 2016

Use of Forecast Uncertainties in the Power Sector: State-of-the–Art of Business Practices

C. Möhrlen*, R. J. Bessa[†], M. Barthod[‡], G. Goretti[§] and M. Siefert[¶] *WEPROG ApS, Assens, Denmark, Email: com@weprog.com [†]INESC TEC, Porto, Portugal, Email: ricardo.j.bessa@inesctec.pt [‡]meteo*swift, Toulouse, France, Email: morgane.barthod@meteoswift.com [§]Dublin Institute of Technology, Ireland, Email: gianni.goretti@mydit.ie [¶]Fraunhofer IWES, Kassel, Germany, Email: malte.siefert@iwes.fraunhofer.de

state-of-the-art use of forecast uncertainties in the business practices of actors in the power systems sector that is part of the "IEA Wind Task 36: Wind Power Forecasting". The purpose of this task is to get an overview of the current use and application of probabilistic forecasts by actors in the power industry and investigate how they estimate and deal with uncertainties. The authors with expertise in probabilistic forecasting have been gathering information from the industry in order to identify the areas, where progress is needed and where it is difficult to achieve further progress. For this purpose, interview questions were compiled for different branches in the power industry and interviews carried out all around the world in the first six months of 2016. At this stage, we present and discuss results from this first round of interviews and draw preliminary conclusions outlining gaps in current forecasting methodologies and their use in the industry. At the end we provide some recommendations for next steps and further development with the objective to formulate guidelines for the use of uncertainty forecasts in the power market at a later stage.

I. INTRODUCTION

The relevance of forecast uncertainties for wind power and other renewable energies grows as the penetration of these sources in the energy mix increases. Once a certain level of penetration is reached, ignoring the reliability of forecasts not only becomes expensive in terms of reserve

Abstract—The work we present is an investigation on the roughly goes with wind speed to the power of three, and small errors and uncertainties are thus amplified and have an even higher impact compared to wind speed uncertainties. Weather development associated with fronts moving over large areas where wind is increasing rapidly over a short time are the most critical situations for a balance responsible party or a transmission system operator (TSO): it is under these circumstances that a deterministic forecast may be strongly incorrect and suppress steep ramping that can cause system security issues as well as large imbalances. Translated in the market, it means that there can be a sudden lack of power during a down-ramping event or too little flexible power that can be down-regulated fast and efficiently, which then results in curtailment. As long as the penetration level of wind is below 20% of generation, such uncertainty can usually be dealt with with a reasonable amount of reserves. As penetration increases, or in the case of island grids or badly interconnected grids, reserves and ancillary services grow above a desirable level.

> In order to get an understanding of the current state of use of uncertainty forecasts and to find the gaps in the understanding of uncertainties and the associated forecasting tools and methods, we have been carrying out a study with a combination of questionnaires and interviews, which will

Use of probabilistic forecasting

Open Access journal paper 48 pages on the use of uncertainty forecasts in the power industry

Definition – Methods – Communication of Uncertainty – End User Cases – Pitfalls - Recommendations

Source: http://www.mdpi.com/1996-1073/10/9/1402/

MDPI

Review

Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry

Ricardo J. Bessa ^{1,*} ⁽²⁾, Corinna Möhrlen ² ⁽²⁾, Vanessa Fundel ³, Malte Siefert ⁴, Jethro Browell ⁵ ⁽²⁾, Sebastian Haglund El Gaidi ⁶, Bri-Mathias Hodge ⁷, Umit Cali ⁸ and George Kariniotakis ⁹

- ¹ INESC Technology and Science (INESC TEC), 4200-465 Porto, Portugal
- ² WEPROG, 5610 Assens, Denmark; com@weprog.com
- ³ Deutscher Wetterdienst, 63067 Offenbach, Germany; vanessa.fundel@dwd.de
- ⁴ Fraunhofer Institute for Wind Energy and Energy System Technology (IWES), 34119 Kassel, Germany; malte.siefert@iwes.fraunhofer.de
- ⁵ University of Strathclyde, Department of Electronic and Electrical Engineering, Glasgow G1 1XQ, UK; jethro.browell@strath.ac.uk
- ⁶ Royal Institute of Technology, Department of Mechanics, SE-100 44 Stockholm, Sweden; sheg@kth.se
- ⁷ National Renewable Energy Laboratory, Golden, CO 80401, USA; bri-mathias.hodge@nrel.gov
- ⁸ University of North Carolina Charlotte, Dept. of Engineering Technology and Construction Management, Charlotte, NC 28223, USA; ucal@uncc.edu
- ⁹ MINES Paris Tech, PSL Research University, Centre for Processes, Renewable Energies and Energy Systems (PERSEE), 06904 Sophia Antipolis Cedex, France; georges.kariniotakis@mines-paristech.fr
- Correspondence: ricardo.j.bessa@inesctec.pt; TeL: +351-22209-4216

Academic Editor: David Wood

Received: 18 August 2017; Accepted: 8 September 2017; Published: 14 September 2017

Abstract: Around the world wind energy is starting to become a major energy provider in electricity markets, as well as participating in ancillary services markets to help maintain grid stability. The reliability of system operations and smooth integration of wind energy into electricity markets has been strongly supported by years of improvement in weather and wind power forecasting systems. Deterministic forecasts are still predominant in utility practice although truly optimal decisions and risk hedging are only possible with the adoption of uncertainty forecasts. One of the main barriers for the industrial adoption of uncertainty forecasts is the lack of understanding of its information content (e.g., its physical and statistical modeling) and standardization of uncertainty forecast products, which frequently leads to mistrust towards uncertainty forecasts and their applicability in practice. This paper aims at improving this understanding by establishing a common terminology and reviewing the methods to determine, estimate, and communicate the uncertainty in weather and wind power forecasts. This conceptual analysis of the state of the art highlights that: (i) end-users should start to look at the forecast's properties in order to map different uncertainty representations to specific wind energy-related user requirements; (ii) a multidisciplinary team is required to foster the integration of stochastic methods in the industry sector. A set of recommendations for standardization and improved training of operators are provided along with examples of best practices.

Broader paper on uncertainty forecasting

- Prediction Models Designed to Prevent Significant Errors
- By Jan Dobschinski, Ricardo Bessa, Pengwei Du, Kenneth Geisler, Sue Ellen Haupt, Matthias Lange, Corinna Möhrlen, Dora Nakafuji, and Miguel de la Torre Rodriguez

Uncertainty Forecasting in a Nutshell

DOI: 10.1109/MPE.2017.2729100

Digital Object Identifier 10.1169/MPE.2017.2729100 Date of publication: 18 October 2017

TTIS IN THE NATURE OF CHAOTIC ATMOspheric processes that weather forecasts will never be perfectly accurate. This natural fact poses challenges not only for private life, public safety, and traffic but also for electrical power systems with high shares of weather-dependent wind and solar power production.

To facilitate a secure and economic grid and market integration of renewable energy sources (RES), grid operators and electricity traders must know how much power RES within their systems will produce over the next hours and days. This is why RES forecast models have grown over the past decade to become indipensible tools for many stakeholders in the energy economy. Driven by increased grid stability requirements and market forces, forecast systems have become tailored to the end user's application and already perform reliably over long periods. Apart from a residually moderate forecast error, there are single extremeerror events that greatly affect grid operators.

Nevertheless, there are also forecast systems that provide additional information about the expected forecast uncertainty and estimations of both moderate and extreme errors in addition to the "best" single forecast. Such uncertainty forecasts warn the grid operator to prepare to take special actions to ensure grid stability.

The State of the Art in Forecast Generation

Today, some forecast systems have been developed specifically to predict the power production of single wind and solar units, differently sized portfolios, local transformer stations and subgrids, distribution and transmission grids, and entire countries. Nearly all forecast systems have one thing in common: they rely on numerical weather predictions (NWPs) to calculate the expected RES power production. The way to transform weather predictions into power forecasts depends crucially on the end user's application and the available plant configuration and measurement data. If historical measurements are available, forecast model developers often use statistical and machine-learning techniques to automatically find a relation between historical weather forecasts and simultaneously observed power measurements. If no historical measurement data are available, e.g., for new installations of RES units, the transformation of weather to power is often accomplished by physically based models that consider the unit's parameters to map the internal physical processes.

Minute-scale forecasting

Open Access review journal paper: 30 pages on minute-scale forecasting of wind power inclusive review on data assimilation techniques, probabilistic methods.

Use of minute-scale forecasting: (1) wind turbine and wind farm control, (2) power grid balancing, (3) energy trading and ancillary services

Source:https://www.mdpi.com/1996-1073/12/4/712

Energies 2019, 12, 712; doi:10.3390/en12040712 www.mdpi.com/journal/energies

🔪 energies

MQPI

Artide Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36

Ines Würth ^{1,*}, Laura Valldecabres ², Elliot Simon ³^(D), Corinna Möhrlen ⁴^(D), Bahri Uzunoğlu ^{5,6}, Ciaran Gilbert ⁷^(D), Gregor Giebel ³^(D), David Schlipf ⁸^(D) and Anton Kaifel ⁹^(D)

- Stuttgart Wind Energy, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany
- ² ForWind-University of Oldenburg, Institute of Physics, Küpkersweg 70, 26129 Oldenburg, Germany; laura.valldecabres@forwind.de
- ³ DTU Wind Energy (Riso Campus), Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark; ellsim@dtu.dk (E.S.); grgi@dtu.dk (G.G.)
- ⁴ WEPROG, Willemoesgade 15B, 5610 Assens, Denmark; com@weprog.com
- Department of Engineering Sciences, Division of Electricity, Uppsala University, The Ångström Laboratory, Box 534, 751 21 Uppsala, Sweden; bahriuzunoglu@computationalrenewables.com
- ⁶ Department of Mathematics, Florida State University, Tallahassee, FL 32310, USA
 ⁷ Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George St, Glasgow G11XW, UK; ciaran, gilbert@strath.ac.uk
- 8 Wind Energy Technology Institute, Flensburg University of Applied Sciences, Kanzleistraße 91–93, 24943 Flensburg, Germany; david.schlipf@hs-flensburg.de
- ⁹ Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg, Meitnerstraße 1, 70563 Stuttgart. Germany: anton.kaifel@zsw-bw.de
- * Correspondence: wuerth@ifb.uni-stuttgart.de; Tel.: +49-711-685-68285

Received: 14 December 2018; Accepted: 14 February 2019; Published: 21 February 2019

check for updates

Abstract: The demand for minute-scale forecasts of wind power is continuously increasing with the growing penetration of renewable energy into the power grid, as grid operators need to ensure grid stability in the presence of variable power generation. For this reason, IEA Wind Tasks 32 and 36 together organized a workshop on "Very Short-Term Forecasting of Wind Power" in 2018 to discuss different approaches for the implementation of minute-scale forecasts into the power industry. IEA Wind is an international platform for the research community and industry. Task 32 tries to identify and mitigate barriers to the use of lidars in wind energy applications, while IEA Wind Task 36 focuses on improving the value of wind energy forecasts to the wind energy industry. The workshop identified three applications that need minute-scale forecasts: (1) wind turbine and wind farm control, (2) power grid balancing, (3) energy trading and ancillary services. The forecasting horizons for these applications range from around 1s for turbine control to 60 min for energy market and grid control applications. The methods that can be applied to generate minute-scale forecasts rely on upstream data from remote sensing devices such as scanning lidars or radars, or are based on point measurements from met masts, turbines or profiling remote sensing devices. Upstream data needs to be propagated with advection models and point measurements can either be used in statistical time series models or assimilated into physical models. All methods have advantages but also shortcomings. The workshop's main conclusions were that there is a need for further investigations into the minute-scale forecasting methods for different use cases, and a cross-disciplinary exchange of different method experts should be established. Additionally, more efforts should be directed towards enhancing quality and reliability of the input measurement data.

Keywords: wind energy; minute-scale forecasting; forecasting horizon; Doppler lidar; Doppler radar; numerical weather prediction models

Energies 2019, 12, 712; doi:10.3390/en12040712

WP3 End use Workshop Glasgow

"Maximising Value from State-of-the-art Wind Power Forecasting Solutions" Strathclyde University, Glasgow, 21 Jan 2020

- Talks by academia and industry (e.g. UK National Grid)
- Open Space discussion on RP, data and forecast value
- Game on value of probabilistic forecasts (feel free to play it yourself!): https://mpib.eu.qualtrics.com/jfe/form/SV_d5aAY95q2mGl8El
- Streamed on YouTube: https://www.youtube.com/watch?v=1NOIr7jluXI

Topic: Meteorological Measurements and Instrumentation Standardization for Integration into Grid Codes

Results from 2 Workshops: ICEM 2019 & WIW 2019

Need for Industry Standard ?

→Need for best practices: BUT too strict standards are worse than non

- No standards leads to chaotic data management
- → Instrumentation without maintenance: data looses value
- → Maintenance schedules: once, twice per year ?
- Met instrumentation should be part of the turbine delivery/installation

Dissemination

- $\circ~$ No consensus on how to accomplish
- ENSO-E is a potential body for dissemination
- Forecasting still undervalued. Need more forecasters in TSOs.
- Need simple advice to give operators, especially in the developing world

Topic: Meteorological Measurements and Instrumentation Standardization for Integration into Grid Codes

Results from 2 Workshops: ICEM 2019 & WIW 2019

- General Agreement that Standards/RPs are Needed
 - $\circ~$ Grid codes vary from region to region
 - Concern about adopting WMO or similar standards, which may be expensive overkill for grid code purposes
 - Should reference traceability to standards but be instrument agnostic
 - Could suggest required measurements by IPPs at time of commissioning
 - $\circ~$ Need education on importance of data quality
 - $\circ~$ Need to address site selection for instrumentation
 - Need to tailor reporting interval to forecast model input needs

Data Science for Environmental Modelling and Renewables

- A Massive Open Online Course -

PRESENTATION SLIDES ESIG Forecasting Workshop

Session 8

Jethro Browell (presented by Corinna Möhrlen) June 2018 St. Paul, MN, USA

Data Science for Environmental Modelling and Renewables

A Massive Open Online Course 6 Weeks, Equivalent to 5 ECTS Credits

Glasgow

Course Outline

Week 1: Introduction Week 2: R Bootcamp Week 3: Patterns in temporal data Week 4: Patterns in spatial, spatio-temporal and network data Week 5: Open data, Citizen Science and Twitter Week 6: Wind and Solar Power Forecasting

Week 6: Wind and Solar Power Forecasting

By the end of the week participants will be able to:

- Explain the principles of numerical weather prediction and make informed use of such data
- Produce basic deterministic and probabilistic wind and solar power forecasts
- Explain and apply the principles of forecast evaluation

Video Content

30-60 Minutes of video comprising a short lecture and interviews with forecast users.

Content Pages

- Overview of the model chain: NWP → Physical/Statistical Model → Use and Evaluation
- 2. Numerical Weather Prediction: Basic Principles
- 3. Tools and methods in R
- 4. Deterministic Wind Power Forecasting
- 5. Principles of Deterministic Forecast Evaluation
- 6. Deterministic Solar Power Forecasting
- 7. Introduction to Probabilistic Forecasting
- 8. Producing Probabilistic Forecasts
- 9. Principles of Probabilistic Forecast Evaluation
- 10. Best Practice for Users of Commercial Forecasts

Statement for Discussion

Teaching should include standards or guidelines and provide a deeper understanding of the underlying fundamentals

Not having standards leaves teaching at

- fundamental principles
- missing knowledge on state of the art developments

Not having standards educates young professionals with

- very different skills
- no reference to relate new projects to

TORQUE 2016 Munich, Germany, 5-7 October

 The Science of Making Torque from Wind (TORQUE 2016)

 Journal of Physics: Conference Series 753 (2016) 032042
 doi:10.

IOP Publishing doi:10.1088/1742-6596/753/3/032042

Wind power forecasting: IEA Wind Task 36 & future research issues

G Giebel¹, J Cline², H Frank³, W Shaw⁴, P Pinson⁵, B-M Hodge⁶, G Kariniotakis⁷, J Madsen⁸ and C Möhrlen⁹ Published under licence by IOP Publishing Ltd

Journal of Physics: Conference Series, Volume 753, B. Wind, wakes, turbulence and wind farms

Wind power forecasting: IEA Wind Task 36 & future research issues

G Giebel¹, J Cline², H Frank³, W Shaw⁴, P Pinson⁵, B-M Hodge⁶, G Kariniotakis⁷, J Madsen⁸ and C Möhrlen⁹

 ¹ DTU Wind Energy, Riso, Frederiksborgvej 399, 4000 Roskilde, Denmark
 ² Department of Energy, Wind and Water Power Program, 1000 Independence Ave. SW, Washington DC 20585, USA
 ³ Deutscher Wetterdienst, Frankfurter Str. 135, D-63067 Offenbach, Germany
 ⁴ Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN K9-30, Richland, WA 99352 USA
 ⁵ DTU Elektro, Orsteds Plads, 2800 Kgs. Lyngby, Denmark
 ⁶ National Renewable Energy Laboratory, 15013 Denver West Parkway, MS ESIF200, Golden, CO 80401, USA
 ⁷ MINES ParisTech, PSL Research University, Centre PERSEE, CS 10207, 1 Rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France
 ⁸ Vatterfall AB, Jupitervej 6, DK-6000 Kolding, Denmark
 ⁹ WEPROG Aps, Willemoesgade 15B, 5610 Assens

E-mail: grgi@dtu.dk

Abstract. This paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI, ...), operational forecaster and forecast users.

Collected Issues

Nowcast (especially for difficult situations, thunderstorms, small lows, ...) Sub 1 hour temporal resolution Meteorology below 1km spatial resolution Stability issues, especially with daily pattern / (Nightly) Low level jets lcing Farm-Farm interaction / quality of direction forecast Short-term ensembles Ramps and other extremes Spatio-temporal forecasting Rapid Update Models (hourly, with hourly data assimilation) Use of probabilistic forecasts and quality of the extreme quantiles Do DSOs need different forecasts than TSOs? Penalties for bad performance? Incentives for improved perf.? Seasonal forecasting? What's the business case? Data assimilation (with non-linear Kalman filters, 4D Var, ...)

www.IEAWindForecasting.dk

Gregor Giebel

Frederiksborgvej 399, 4000 Roskilde, DK grgi@dtu.dk

Will Shaw, PNNL, Richland (WA), USA will.shaw@pnnl.gov

The IEA Wind TCP agreement, also known as the Implementing Agreement for Co-operation in the Research, Development, and Deployment of Wind Energy Systems, functions within a framework created by the International Energy Agency (IEA). Views, findings, and publications of IEA Wind do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.