SOURCE AND IMPACT OF GREENHOUSE GASSES IN ANTARCTICA

THE SENECA PROJECT
(financed by PNRA 2018)

Ruggiero L.¹, Sciarra A.¹, Mazzini A.⁴, Romano V.², Mazzoli C.³, Tartarelli M.C.², Florindo F.¹, Wilson G.³, Bigi S.², Ciotoli G.⁸, Ascani M.¹, Graziani S.², Lupi M.⁶, Fischanger F.⁷, Dagg B.⁵, Anderson J.⁵, Worthington R.⁵, Hardie R.⁵, Sassi R.³

¹ INGV - Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
² Dipartimento di Scienze della Terra, Sapienza-Università di Roma, DST-Sapienza, Italy
³ Dipartimento di Geoscienze, Università di Padova, Italy
⁴ CEED University of Oslo
⁵ GNS - Otago University
⁶ University of Geneva
⁷ Geostudi Astier
⁸ CNR-IGAG, Italy
SENECA Project
source and impact of greenhouse gasses in Antarctica

Project duration: 24 months

Mission leagues & Targets:
I. December 2019 – January 2020 Taylor Valley
II. December 2020 – January 2021 Wright Valley

The project is developed along four major tasks:
• Soil gas content and origin
• CO₂ and CH₄ degassing output
• Geophysics exploration and petrographic characterization of the soils
• Seasonal trend of CO₂ soil concentration
Arctic and Antarctic regions store almost twice the carbon currently present in the atmosphere.
McMurdo Dry valleys Antarctica
Mc Murdo Dry valleys Antarctica

- Largest ice-free surface in Antarctica 4,800 km².
- Mean annual -30°C < T < -5°C
- Annual precipitation < 100 mm water equivalent
- One of windiest places on Earth: Katabatic 320 km/h
- Climate: cold and extremely arid

Studied area ≈ 20 km²
Planned activities

- SOIL GAS: CONTENT AND ORIGIN
 \(\text{CO}_2, \text{CH}_4, ^{222}\text{Rn} \) and \(^{220}\text{Rn} \)
- DEGASSING OUTPUT
- GEOELECTRICAL SURVEY
- SOIL: PETROGRAPHY CHARACTERIZATION & PROPERTIES
- SEASONAL TREND OF \text{CO}_2 SOIL CONCENTRATION
Water sampling and in situ measurements

- Isotopes (O, D)
- Anions
- Cations
- pH from 7.2 to 10.3
- Conductivity 93.2 to 4340 μS
- Microbial colonies thriving at stagnating waters

04/05/2020
Monitoring probes installation

Long range winter monitoring
- CO₂
- Temp
- Atmospheric pressure
Soil CO$_2$ – CH$_4$ flux survey
Soil and Permafrost sampling

- Sampled sediments for grainsize and petrography
- Sampled permafrost for TOC
- Permafrost contains CO$_2$ and CH$_4$ after thawing
Gas samples from 30-40 cm depth analysed in the laboratory in Antarctica

- Predominant gas CO₂ + CH₄
- Presence of Rn emissions from shallow regions
Scott Base lab

Gas samples, dissolved gas in the waters and permafrost are analysed directly in the Scott Base laboratory in Antarctica.
Soil gas survey

Two grids mesh 500 m each

December ‘warmer’

January ‘colder’
Soil gas survey

Additional 100 m spacing profiles to compare with geoelectric profiles.
Preliminary Results – Geochemical activities

Soil gas concentration survey

<table>
<thead>
<tr>
<th></th>
<th>December</th>
<th>January</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>up to 34389 ppm</td>
<td>up to 13259 ppm</td>
</tr>
<tr>
<td>CH₄</td>
<td>up to 3977 ppm</td>
<td>up to 18446 ppm</td>
</tr>
</tbody>
</table>

CH₄ and CO₂ are present in the sediments both during warmer and colder survey.

Soil CO₂ – CH₄ flux survey

<table>
<thead>
<tr>
<th></th>
<th>December</th>
<th>January</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>up to 4.35 g/m²d</td>
<td>up to 11.6 g/m²d</td>
</tr>
<tr>
<td>CH₄</td>
<td>up to 40.2 mg/m²d</td>
<td>up to 40.8 mg/m²d</td>
</tr>
</tbody>
</table>

Increase in CO₂ flux in January (colder survey). Stable flux of CH₄ in December & January (warmer survey).

DECEMBER

CO₂ up to 4.35 g/m²d CH₄ up to 40.2 mg/m²d

JANUARY

CO₂ up to 11.6 g/m²d CH₄ up to 40.8 mg/m²d

04/05/2020
Geoelectrics activities
We performed a 2D geoelectrical survey to map the depth of the permafrost and the electrical properties of the subsurface. We selected two survey areas according to:

- The distribution of the resistivity values from previous studies
- Correlation with borehole data (DVDP 11, ~320 m deep)
- Logistic constraints
Field apparatus

We used the Fullwaver system (Gance et al., 2018, Lajaunie et al., 2018).

Current is injected through an induced polarization transmitter, (VIP 5000, IRIS Instruments). An external generator provides current for the VIP. The receiving nodes record continuously the electrical field and the injection electrodes can be moved inside and outside the receiving nodes with any type of electrode array configuration. Injected current is recorded on real time on the I-Fullwaver.

- one induced polarization transmitter (VIP)
- one current measurement unit called I-Fullwaver
- a set of 2-channels independent receiving nodes called V-Fullwavwers
- a motor generator
Geoelectrical survey

AIMS

- Investigate sediments properties
- Define permafrost base
- Calibrate results with available boreholes
Survey design

Locations of the survey lines, transmission limits, receivers survey lines, VIP and base camp in the Taylor Valley.

P1: 4.5 km
P2: 3.8 km
P3: 3.2 km
P4: 1.8 km
P5: 1.6 km
Geoelectrics deployment
Conclusions

- CH$_4$ and CO$_2$ present in the thawed permafrost
- Emission rates dependant on T variations
- First ever emission estimate for CH$_4$ and CO$_2$ in Southern Polar Hemisphere
- Benchmark for future measurements
- Map preferential gas release pathways
- Define thickness of permafrost using geoelectrical data
- Investigate mechanisms of gas migration through the shallow sediments
Thank you