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Basic problem

Dynamic adaptive meshing, capturing the features of the terrain (strong
source term in SWE) and the state variables (depth, velocity)

- ad-hoc thresholding for coarsening & refinement
- ensuring conservation, well-balancing
- proper grading of neighbors (2 small neighbours per edge, not more)

- Discontinuous Galerkin (high-order, locality, HPC)

- MultiWavelets to decompose DG solution into multi-resolution data
- Multiresolution analysis to assess what is relevant at each spatial
resolution

- Objective, general thresholding strategy

- Flexible, generic, scalable approach for hyperbolic PDEs



Dynamically-adaptive scheme which allows to significantly reduce the
number of grid cells, while achieving extremely high spatial resolution.

Applicable to complex and realistic shallow water problems, spanning
many spatial scales of interest.

The strategy is robust and flexible, requires only a single control parameter,
and keeps all the properties of the reference numerical scheme actually
solving the equations.



Some background on MWDG

Developed for systems of hyperbolic

equations —Euler eqs.—

(Hovhannisyan et al., Math. Comput. 2014)
(Gerhard et al., ]ournal of Scientific Computing. 2015)
(Gerhard & Miiller. Comp. Appl. Math. 2016)
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Mathematical formulation and proof for SWE
(Gerhard et al., J. Computational Physics 2015)
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Application and assessment in 1D for SWE

(Caviedes-Voullieme & Kesserwani. Advances in Water Resources. 2015)
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In this work, we show the applicability of MWDG to complex and

realistic experlmental benchmark cases in two-dimensions.



https://doi.org/10.1007/s10915-014-9846-9

How does it work?

Shallow water equations

Projection into DG space (SWE solution - DG modes)

A~

ot

ou,, f ‘ i B
W), dX— (u,) : Vw,+s(x,u;,) - W, dX+ W, dS =0,
v, v, J

Vi




How does it work?

Legendre polynomials

081 - v/li
06 -7 f
7 T e el = 3 i
S DG-SWE
\ o 5 - ! —
0.2F Y / X N .
\ \ e F” N . 11

< of !

(single scale)

-04r,
-0.6
-0.8} _

7

. . 1 I . . . . N )
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Projection into DG space
SWE solution — DG modes

Multiwavelets (a wavelet for every DG mode)
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How does it work? A change and

of basis functions, which exist
in nested subspaces
(multiwavelets)

Single-scale Basis function in

basis function \ complement space
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How does it work?
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Multiscale transformation is a generalisation of the 2-scale transform.

Decompose fine resolution into coarse data and details across scales
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How does it work?
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Hard thresholding

Identify, in each resolution which details are significant, and keep the
resolution that ensures that those details are kept. If details are not
significant, allow coarsening.

Magnitude of details is normalised across scales and state (conserved)
variables, which allows for a single threshold to compare against.



How does it work?

adaptive grid before refinement  multi-scale representation

predicted details

step B (higher levels) adaptive grid after refinement

Also necessary to predict details in the neighboring cells, as they may
become relevant in the next time step.

Shocks in the flow field are always refined to highest level of
refinement.

Bed discontinuities are treated as shocks of the z(x,y) field.

Wet/dry fronts are also refined to highest level.




Some features of the method

MWDG strategy preserves all features of the underlying DG
solvers, namely:

« DG-SWE is flexible in terms of order-of-accuracy. In practice,
we don’t take it beyond 3™ order.

e The DG-SWE scheme is locally mass conservative, well-
balanced, can deal with wet/dry interfaces.

The adaptive scheme has some interesting properties:

 Refinement/coarsening threshold is controlled by a single
parameter, regardless of number of state variables and levels

« Not constrained by proper grading (only two finer neighbors
to a coarser cell, 2:1 ratio)

 Does not require a fine enough coarsest mesh, as other

strategies.



How does the adaptive grid look?

Circular dam break (frictionless & flat bed — homogeneous PDE)

Depth (m)
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Some features of the adaptive grid

Jumps from
L2 to L4 (4:1)

- grading:
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Some results: experimental dam-break

Well-known experimental benchmark
(Soares-Frazao & Zech, Journal of Hydraulic Research, 2008)
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https://doi.org/10.3826/jhr.2008.3164

Some results: experimental dam-break
Solved with MWDG3 (quadratic test functions)
Coarsest mesh (level 0): 90 x 9 = 810 cells

Finest mesh (L=6): 5760 x 576 = 3.3 x 10¢ cells dx = 6.25 mm
Finest mesh (L=7): 11520 x 1152 = 13.3 x 10° cells dx = 3.125 mm
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Some results: experimental dam-break

Time: 1.0 s L = 7 solution
Water depth [m]
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Some results: experimental dam-break

Time: 2.0 s L = 7 solution
Water depth [m]

Coarsening to L2

L7 wave interactions / reflections

L7 shock refinement




Some results: experimental dam-break

Time: 3.0 s

Water depth [m]

Highly variable, high resolution
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Some results: experimental dam-break

Time: 4.0 s L = 7 solution
Water depth [m]

Supercritical
reflections



Some results: experimental dam-break

Time: 7.0 s L = 7 solution
Water depth [m]

Coarsening to L1 High resolution jet
tracking



Some results: experimental dam-break

Time: 10.0 s

Water depth [m]
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High resolution + High order — very little numerical dissipation

We can observe complex structures



Some results: experimental dam-break

X-velocity y-velocity




Some results: experimental dam-brea

Froude number e

Froude number provides good insight into the flow regimes and the
flow’s space of cﬁaracteristics.

Although the grid is not adapted by the Froude number, it certainly
captures its features. Good emergent model property.



Some results: Tsunami case

Experimental case of tsunami in Monai valley £ .|

http://isec.nacse.org/workshop/2004_cornell/bmark2.html

Solved with MWDG?2 (linear test functions)
Coarsest mesh (level 0): 8 x 5 = 40 cells R L R

Finest mesh (L=5): 256 x 160 = 40960 cells dx =2.14 cm

Finest mesh (L=6): 512 x 320 = 163840 cells dx = 1.07 cm
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http://isec.nacse.org/workshop/2004_cornell/bmark2.html
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Some results: Tsunami case Incoming

wave

Time = 14.3s

Time = 15.0s
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Some results: Tsunami case
Time = 16.5s

Wave reflections
Time = 18.0s




Some results: Tsunami case Flooded island
Time = 19.5s
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Some results: Tsunami case

At the same resolution, MWDG-SWE

strategy is more efficient in reducing cell

numbers than all other strategies

Comparison of mesh properties for tsunami case simulations.

Cell count normalised b
number of cells of L6 ref}érence
mesh. Smaller is better for same
resolution.

Simulation Scheme N, 6x [m] n 7 ii ‘ Notes

MWDG L =5 DG3 6211 0.0214 0.85 0.04 0.08 DAMR

MWDG L =6 DG3 18139 0.0107 0.89 0.11 0.11 DAMR

Kesserwani and Liang (2012a) DG2 41843 0.014 0.56 0.26 0.33 DAMR

Hou et al. (2018) MUSCL 30130 0.014 0.56 0.26 0.33 FAMR cartesian. N, is estimated
Arpaia and Ricchiuto (2018) ALE 7000 0.025 - 0.23 0.21 moving mesh
Arpaia and Ricchiuto (2018) ALE 36911 0.01 - 0.08 0.19 moving mesh
Murillo and Garcia-Navarro (2012) FV 47432 0.028 - Uniform triangular
Murillo and Garcia-Navarro (2012) FV 3035648 0.0035 - 18.5 6.05 Uniform triangular
Gonzalez et al. (2011) FV 95256 0.014 - 0.58 0.75 Uniform cartesian
Murillo et al. (2009) MUSCL 750 0.224 - 0.005 0.096  Uniform triangular
Murillo et al. (2009) MUSCL 762048 0.007 - 4.65 3.04 Uniform triangular
Morales-Herndndez et al. (2014) FV 23716 0.028 - 0.15 0.38 Uniform cartesian
Morales-Hernandez et al. (2014) FV 94864 0.014 - 0.58 0.76 Uniform cartesian
Vater et al. (2019) DG2 393216 0.007 - 2.4 1.6 Uniform triangular

Compared to Kesserwani and Lian

(2012) and to Hou et al (2018):
MWDG L6 is 3 times less cells to achieve even higher resolution

Compared to Vater et al (2019), MWDG L6 results in an order of magnitude
reduction in maximum cell numbers, achieving similar resolution



Some results: Malpasset dam-break

Well-known benchmark test of real dam-break, with field and
experimental data

Solved with MWDG?2 (linear test functions)

Coarsest mesh (level 0): 27x15 = 405 cells dx = 640 x 424 m
Finest mesh (L=7): 3456 x 1920 = 6.63 x 10°cells dx=15x3m

Reservoir

Bed elevation (m)
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Some results: Malpasset dam-break
Time: 50s

Depth [m] VQIOCIty [m/S]
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Some results: Malpasset dam-break
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Some results: Malpasset dam-break
Time: 1000s

Depth [m] Velocity [m/s]
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Some results: Malpasset dam-break
Time: 1000s
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Conclusions

« MWDG is applicable to complex and realistic 2D shallow-water problems.

e It is possible to achieve very high resolution and accuracy, otherwise very
difficult to achieve with non-adaptive solvers.

« Since the method is not constrained by proper gradient, it can achieve
significantly higher efficiency than previous strategies.

« MWDG captures all the good (conservation, well-balancing, wet/dry
treatment) features of the underlying reference SWE solver, but also
highlights deficiencies (wet/dry limiters, spurious momentum waves).

« Locality of DG allows for high-order solutions without compromising
parallelisation.

e Strong reduction in number of cells, together with locality & parallelisation
make MWDG competitive with high-order FV solvers.

 Further exploit hp-adaptivity also based on multiresolution analysis. Small

cells are required at shocks and wet/dry interfaces, but no need for high-
order there. This also allows for larger time steps.



More results and details in our paper...

Advances in Water Resources 138 (2020) 103559
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journal homepage: www.elsevier.com/locate/advwatres

Multiwavelet-based mesh adaptivity with Discontinuous Galerkin schemes: = @)
Exploring 2D shallow water problems <L
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ARTICLE INFO ABSTRACT
Keywords: In Gerhard et al. (2015a) a new class of adaptive Discontinuous Galerkin schemes has been introduced for shal-
Dynamic adaptive meshing low water equations, including the particular necessary properties, such as well-balancing and wetting-drying

Multiresolution analysis
High-order schemes
Shallow water equation
Discontinuous Galerkin
Multiwavelets

treatments. The adaptivity strategy is based on multiresolution analysis using multiwavelets in order to encode
information across different mesh resolution levels. In this work, we follow-up on the previous proof-of-concept
to thoroughly explore the performance, capabilities and weaknesses of the adaptive numerical scheme in the two-
dimensional shallow water setting, under complex and realistic problems. To do so, we simulate three well-known
and frequently used experimental benchmark tests in the context of flood modelling, ranging from laboratory to
field scale. The real and complex topographies result in complex flow fields which pose a greater challenge to
the adaptive numerical scheme and are computationally more ambitious, thus requiring a parallelised version of
the aforementioned scheme. The benchmark tests allow to examine in depth the resulting adaptive meshes and
the hydrodynamic performance of the scheme. We show that the scheme presented by Gerhard et al. (2015a)
is accurate, i.e., allows to capture simultaneously large and very small flow structures, is robust, i.e., local grid
refinement is controlled by just one parmeter that is auotmatically chosen and is more efficient in terms of the
adaptive meshes than other shallow-water adaptive schemes achieving higher resolution with less cells.

https://doi.org/10.1016/].advwatres.2020.103559
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