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Basic problemShallow-water problems in the environment (floods, rivers, coasts) are large spatial domains that require local very high resolution to capture local features which may govern the flowBasic solutionDynamic adaptive meshing, capturing the features of the terrain (strong source term in SWE) and the state variables (depth, velocity)Technical problems in existing strategies- ad-hoc thresholding for coarsening & refinement- ensuring conservation, well-balancing- proper grading of neighbors (2 small neighbours per edge, not more)Proposed strategy: MWDG- Discontinuous Galerkin (high-order, locality, HPC)- MultiWavelets to decompose DG solution into multi-resolution data- Multiresolution analysis to assess what is relevant at each  spatial resolution- Objective, general thresholding strategy- Flexible, generic, scalable approach for hyperbolic PDEs



  

Take home message
Dynamically-adaptive scheme which allows to significantly reduce the number of grid cells, while achieving extremely high spatial resolution.
Applicable to complex and realistic shallow water problems, spanning many spatial scales of interest.
The strategy is robust and flexible, requires only a single control parameter, and keeps all the properties of the reference numerical scheme actually solving the equations.



  

Basic problemSome background on MWDGDeveloped for systems of hyperbolic equations –Euler eqs.–  (Hovhannisyan et al., Math. Comput. 2014) (Gerhard et al., Journal of Scientific Computing. 2015)(Gerhard & Müller. Comp. Appl. Math. 2016) Mathematical formulation and proof for SWE (Gerhard et al.,  J. Computational Physics 2015)
Application and assessment in 1D for SWE (Caviedes-Voullième & Kesserwani. Advances in Water Resources. 2015)

In this work, we show the applicability of MWDG to complex and realistic experimental benchmark cases in two-dimensions.

https://doi.org/10.1007/s10915-014-9846-9


  

Basic problemHow does it work?

Legendre polynomials

Projection into DG space (SWE solution → DG modes)

Shallow water equations

DG-SWE (single scale, “classical” modal DG)

Explicit time-integration withStrong-stability preserving Runge-Kutta scheme



  

Basic problemHow does it work?
Shallow WaterEquations DG-SWE(single scale)

Single scaleDG-SWE MWDG-SWE(multiscale)

Legendre polynomials

Multiresolution spaces

Multiwavelets (a wavelet for every DG mode)
Projection into DG space(SWE solution → DG modes)



  

Basic problemHow does it work?

single-scale (fine) single-scale (coarse) details

Two scale transformation

Detail coefficientsDG approximate solution
Coarse representation

A change and decomposition of basis functions, which exist in nested subspaces (multiwavelets) Single-scale basis function Basis function in complement space



  

Basic problemHow does it work?

Decompose fine resolution into coarse data and details across scalesMultiscale transformation is a generalisation of the  2-scale transform. 



  

Basic problemHow does it work?

Identify, in each resolution which details are significant, and keep the resolution that ensures that those details are kept. If details are not significant, allow coarsening.Magnitude of details is normalised across scales and state (conserved) variables, which allows for a single threshold to compare against. 

Hard thresholding



  

Basic problemHow does it work?

Also necessary to predict details in the neighboring cells, as they may become relevant in the next time step.
Shocks in the flow field are always refined to highest level of refinement.Bed discontinuities are treated as shocks of the z(x,y) field.Wet/dry fronts are also refined to highest level.



  

Basic problemSome features of the method
● DG-SWE is flexible in terms of order-of-accuracy. In practice, we don’t take it beyond 3rd order.
● The DG-SWE scheme is locally mass conservative, well-balanced, can deal with wet/dry interfaces.

MWDG strategy preserves all features of the underlying DG solvers, namely:

The adaptive scheme has some interesting properties:
● Refinement/coarsening threshold is controlled by a single parameter, regardless of number of state variables and levels
● Not constrained by proper grading (only two finer neighbors to a coarser cell, 2:1 ratio)
● Does not require a fine enough coarsest mesh, as other strategies.



  

Basic problemHow does the adaptive grid look?
Circular dam break (frictionless & flat bed → homogeneous PDE)



  

Some features of the adaptive grid

43

Jumps from L2 to L4 (4:1) Proper grading: L4 to L5 (2:1)

2

Jumps from L2 to L4 (4:1)Jumps from L4 to L6 (4:1)

Not constrained by proper grading → higher efficiency



  

Basic problemSome results: experimental dam-breakWell-known experimental benchmark (Soares-Frazao & Zech, Journal of Hydraulic Research, 2008)

Water reservoir

FlumeGate

https://doi.org/10.3826/jhr.2008.3164


  

Basic problemSome results: experimental dam-breakSolved with MWDG3 (quadratic test functions)Coarsest mesh (level 0):  90 x 9 = 810 cellsFinest mesh (L=6):  5760 x 576  = 3.3 x 106 cellsFinest mesh (L=7):  11520 x 1152  = 13.3 x 106 cells dx = 6.25 mmdx = 3.125 mm

L = 6 → number of computational cells is 7% of equivalent highest resolution mesh (93% reduction, achieving same resolution)L = 7 → number of computational cells is 4.5% (95.5% reduction, achieving same resolution)



  

Basic problemSome results: experimental dam-breakTime: 1.0 s L = 7 solution

L7 shock refinement L0 cells (still water)High resolution bed kink L3 cells L2 cells

Intermediate refinement behind the shock

Water depth [m]



  

Basic problemSome results: experimental dam-breakTime: 2.0 s L = 7 solutionWater depth [m]

Coarsening to L2

L7 shock refinementL7 wave interactions / reflections



  

Basic problemSome results: experimental dam-breakTime: 3.0 s L = 7 solutionWater depth [m]

Highly variable, high resolution Very sharp transition from L4 to L7 cells.No proper grading.



  

Basic problemSome results: experimental dam-breakTime: 4.0 s L = 7 solutionWater depth [m]

Supercritical reflections

Vortices



  

Basic problemSome results: experimental dam-break

L0 concrete blocks

Coarsening to L1 High resolution jet tracking

Wakes

Time: 7.0 s L = 7 solutionWater depth [m]



  

Basic problemSome results: experimental dam-breakTime: 10.0 s L = 7 solutionWater depth [m]

KH instabilities?

High resolution + High order → very little numerical dissipationWe can observe complex structures



  

Basic problemSome results: experimental dam-break
x-velocity y-velocity



  

Basic problemSome results: experimental dam-break
Froude number

Froude number provides good insight into the flow regimes and the flow’s space of characteristics.Although the grid is not adapted by the Froude number, it certainly captures its features. Good emergent model property.



  

Basic problemSome results: Tsunami caseExperimental case of tsunami in Monai valley
Coarsest mesh (level 0):  8 x 5 = 40 cellsFinest mesh (L=5):  256 x 160  = 40960 cellsFinest mesh (L=6):  512 x 320  = 163840 cells dx = 2.14 cmdx = 1.07 cm

http://isec.nacse.org/workshop/2004_cornell/bmark2.html

For L=6 case, the most expensive instantaneous grid uses only 11% of the size of 
the reference mesh. For L=5, it is 15%, although L6 results in roughly three times more cells.

Solved with MWDG2 (linear test functions)

http://isec.nacse.org/workshop/2004_cornell/bmark2.html


  

Basic problemSome results: Tsunami case

Time = 13.5s 

Time = 0s 

Bed kink

Wet/dry fronts at restL0 cells

Drying fronts



  

Basic problemSome results: Tsunami case

Time = 15.0s 

Time = 14.3s 
Incoming wave

Moving wetting front



  

Basic problemSome results: Tsunami case

Time = 18.0s 

Time = 16.5s 

Wave reflections



  

Basic problemSome results: Tsunami case

Time = 22.5s 

Time = 19.5s 
Flooded island

Wave reflectiontravelling seawards Drying fronts



  

Compared to Kesserwani and Liang (2012) and to Hou et al (2018):MWDG L6 is 3 times less cells to achieve even higher resolution

Basic problemSome results: Tsunami case
Cell count normalised by number of cells of L6 reference mesh. Smaller is better for same resolution.

Compared to Vater et al (2019), MWDG L6 results in an order of magnitude reduction in maximum cell numbers, achieving similar resolution

At the same resolution, MWDG-SWE strategy is more efficient in reducing cell numbers than all other strategies



  

Basic problemSome results: Malpasset dam-break
Solved with MWDG2 (linear test functions)Coarsest mesh (level 0):  27x15 = 405 cellsFinest mesh (L=7):  3456 x 1920  = 6.63 x 106 cells dx = 15 x 3 m dx = 640 x 424 m 
Well-known benchmark test of real dam-break, with field and experimental data



  

Basic problemSome results: Malpasset dam-break
Time: 50s

Depth [m] Velocity [m/s]



  

Basic problemSome results: Malpasset dam-break
Time: 50s

Dry area is refined only for terrain
Highly resolved flooded mountain valley. Complex terrain and flow

Highly resolved dry river channel because of complex terrain
Wet-dry front is highly refined. Sea is coarse, simple flow field.



  

Basic problemSome results: Malpasset dam-breakTime: 1000s
Depth [m] Velocity [m/s]



  

Basic problemSome results: Malpasset dam-breakTime: 1000s Wet-dry front is highly refined

Dry area is refined only for terrain, unchanged
Flooded area has intermediate refinement



  

Conclusions
● MWDG is applicable to complex and realistic 2D shallow-water problems.
● It is possible to achieve very high resolution and accuracy, otherwise very difficult to achieve with non-adaptive solvers.
● Since the method is not constrained by proper gradient, it can achieve significantly higher efficiency than previous strategies.
● MWDG captures all the good (conservation, well-balancing, wet/dry treatment) features of the underlying reference SWE solver, but also highlights deficiencies (wet/dry limiters, spurious momentum waves). 
● Locality of DG allows for high-order solutions without compromising parallelisation.
● Strong reduction in number of cells, together with locality & parallelisation make MWDG competitive with high-order FV solvers.
● Further exploit hp-adaptivity also based on multiresolution analysis. Small cells are required at shocks and wet/dry interfaces, but no need for high-order there. This also allows for larger time steps.



  
https://doi.org/10.1016/j.advwatres.2020.103559

More results and details in our paper...

https://doi.org/10.1016/j.advwatres.2020.103559
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