Transient nature of riverbank filtered drinking water supply systems - a new challenge of natural radioactivity assessment

Katalin Csondor, Petra Baják, Bálint Izsák, Márta Vargha, Heinz Surbeck, Ákos Horváth, Anita Erőss
E-mail: csondorkata@caesar.elte.hu

Eötvös Loránd University, Budapest, Hungary
József & Erzsébet Tóth Endowed Hydrogeology Chair and Foundation
In Hungary 97% of drinking water supply relies on groundwater resources.

Riverbank filtered systems represent 40% of drinking water supply.

In case of 11% of the settlements there are elevated gross alpha activity concentration.
Based on EURATOM drinking water directive → regulations in Hungary regarding the natural radioactivity of drinking waters

Council Directive
2013/51/EURATOM
- Tritium < 100 Bq/l
- Indicative dose < 0.1 mSv/year
- Radon < 100 Bq/l
- Gross alpha activity < 0.1 Bq/l
- Gross beta activity < 1 Bq/l

Government Decree
- Tritium < 100 Bq/l
- Indicative dose < 0.1 mSv/year
- Radon < 100 Bq/l
- Gross alpha activity < 0.1 Bq/l
- Gross beta activity < 1 Bq/l

Gross alpha activity > 0.1 Bq/l many cases in Hungary (11% of settlements) → nuclide specific measurements required

Hydrogeology and groundwater flow system approach can help to understand natural radioactivity of groundwater (geology is not enough): prediction of favorable conditions of elevated radionuclide content
Radionuclides in groundwater

- Uranium (sum of $^{238}\text{U} + ^{234}\text{U}$): mobile mainly in oxidizing environments: recharge limbs of groundwater flow systems
- Radium (^{226}Ra): mobile in reducing and acidic conditions (as Ra^{2+}): regional groundwater flow systems
- Radon (^{222}Rn): mobile (gas), short half life indicates short and/or fast travel time

Since the mobility of uranium and radium is strongly influenced by geochemical conditions, knowledge on the geochemical parameteres of water is required.
Nuclide specific measurements

- Uranium (\(^{238}\text{U} + {^{234}\text{U}}\)) and Radium (\(^{226}\text{Ra}\)) using selectively adsorbing nucfilm disc (Surbeck 2000) and alpha spectrometry method

- Radon (\(^{222}\text{Rn}\)) using liquid scintillation method
Case study - results

- The study areas selected by database provided by National Public Health Center where in case of one local waterwork gross alpha activity > 0.1 Bq/l
- Two riverbank filtered drinking water supply systems

Area “A”
- Radon values: <5 Bq/l – 36 Bq/l
- Radium values: <5 mBq/l – 38 mBq/l
- Uranium values: 15 – 253 mBq/l

Area “B”
- Radon values: <5 Bq/l – 10 Bq/l
- Radium values: <5 mBq/l – 6 mBq/l
- Uranium values: 29 – 150 mBq/l
Case study – Area „A”

Water level: 3.25 m asl
Uranium: 15-76 mBq/l
Radon: 1-36 Bq/l

Water level: 1.2 m asl
Uranium: 22-253 mBq/l
Radium: 1-38 mBq/l
Radon: 1-29 Bq/l

Low river water level → elevated uranium content
Gross methods compared to nuclide specific measurements

- Uncertainties related to gross methods (Jobbágy et al., 2014)
- Only nuclide specific analysis provides a sufficient insight to the interconnection between geological background, flow systems and the occurrence of natural radionuclides in groundwater

Table 1

<table>
<thead>
<tr>
<th>#1</th>
<th>gross alpha (Bq/l)</th>
<th>gross beta (Bq/l)</th>
<th>date</th>
<th>water level (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.12</td>
<td>0.16</td>
<td>Apr</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.13</td>
<td>May</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>0.17</td>
<td>0.12</td>
<td>Nov</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>0.19</td>
<td>Febr</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>0.15</td>
<td>May</td>
<td>4.17</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.13</td>
<td>Oct</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.10</td>
<td>Oct</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>#1</th>
<th>uranium (Bq/l)</th>
<th>radium (Bq/l)</th>
<th>radon</th>
<th>date</th>
<th>water level (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.026</td>
<td>13</td>
<td>Oct</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>-</td>
<td>10</td>
<td>March</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.01</td>
<td>9</td>
<td>Oct</td>
<td>1.20</td>
</tr>
</tbody>
</table>

#6

<table>
<thead>
<tr>
<th>#6</th>
<th>gross alpha (Bq/l)</th>
<th>gross beta (Bq/l)</th>
<th>date</th>
<th>water level (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.11</td>
<td>0.16</td>
<td>Febr</td>
<td>2.34</td>
</tr>
</tbody>
</table>
Conclusion

- Hydrogeology and *groundwater flow system approach* can help to understand natural radioactivity of groundwater (geology is not enough): prediction of favorable conditions of elevated radionuclide content.

- Monitoring of gross alpha and beta activity should be adjusted to the *transient system* of the river bank filtered aquifer.

- Need of nuclide specific measurements: the only way to understand the interconnection between geology, groundwater flows systems and the occurrence of natural radionuclides in groundwater. *Nuclide specific measurements deliver more reliable results* compared to the gross methods.

- Wide range of uranium activity concentrations within the same aquifer (geological unit).

- Adjacent wells (in 5-10 m distance) show very different values → inhomogeneity of floodplain sediments - organic-rich layers may contain uranium.

- The *uranium activity concentrations* of the drinking water depend on the ratio of the groundwater and the surface water (level of the river).

- Elevated *gross alpha activity* are caused by uranium ($^{238}\text{U} + ^{234}\text{U}$).
Acknowledgement

Laboratory background was supported by National Public Health Centre in the research.

Radon was measured within a cooperation with Ákos Horváth (associate professor at the Department of Atomic Physics).

SUPPORTED BY THE ÚNKP-19-3 NEW NATIONAL EXCELLENCE PROGRAM OF THE MINISTRY FOR INNOVATION AND TECHNOLOGY.

This research is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 8130980.