

Numerical assessment of chemical species infiltration in the Prosecco area

Leonardo Costa ª, Mazzega Ciamp S. a, Cardinali A. b, Carretta L. b, Dal Ferro N. b, Mencaroni M. b, Morari F. b, Salandin P. a, Zanin G. b

^a Department of Civil, Environmental and Architectural engineering; ^b Department of Agronomy, Food, Natural resources, Animals and Environment

University of Padova, Italy

Corresponding author: leonardo.costa.1@phd.unipd.it

© Costa et al. all rights reserved

Introduction (1/3) - slide (1/19)

Introduction (2/3) - slide (2/19)

The SWAT project

2 monitoring installations, each of them subdivided in 2 parcels, were organized in October 2018 in 2 wells protection areas

- SETTOLO SITE (VALDOBBIADENE)
 Settolo North and Settolo South parcels
- COLNÙ SITE (CONEGLIANO)
 Colnù East and Colnù West parcels

Unconfined aquifers water tables few meters underneath the surface

Subsurface Water quality and Agricultural pracTices monitoring

Capacitive sensors and porous cups were installed at - 0,1 m, - 0,3 m, - 0,7 m (x2 for each site)

Volumetric Water Content (θ) and Temperature (T) acquired by the capacitive sensors at Settolo (left) and Colnù (right) (Example: 10 weeks temporal window)

The SWAT project (2/4) slide (5/19)

2 meteorological stations were installed (one for each experimental site)

var	description	unit
V_{W}	Wind velocity at 2 m	(m/s)
T_w	Wind temperature	(°C)
D	Wind direction	(degrees)

HYDROLICAL FORCING

and variables needed for

FAO PENMAN-MONTEITH EQUATION

for evapotranspiration modelling

© Costa et al. all rights reserved

The SWAT project (3/4) slide (6/19)

November 2018

A solution containing glyphosate (GLP) and potassium bromide (KBr) was applied on all the 4 site parcels

Soil Analysis

Chemical, Physical, Hydraulic properties
GLP and metabolite AMPA concetrations

Water Analysis

GLP and metabolite AMPA concentrations (Carretta et al. 2019)

© Costa et al. all rights reserved

The SWAT project (4/4) slide (7/19)

Soil Analysis

glyphosate (GLP) evolution in the Settolo site

glyphosate (GLP) evolution in the Colnù site

Results of GLP and AMPA analysis on top layer soil samples

© Costa et al. all rights reserved

Data consistency (1/4) slide (8/19)

Analysis on water samples

GLP and AMPA analysis on water samples

© Costa et al. all rights reserved

Data consistency (2/4) slide (9/19)

GLP and AMPA analysis on water samples: different infiltration process among different sites

© Costa et al. all rights reserved

Data consistency (3/4) slide (10/19)

Periods of monitoring and sampling activity at the experimental sites

© Costa et al. all rights reserved

Data consistency (4/4) slide (11/19)

BRTSim 1D MULTIPHASE COMPUTATIONAL SOLVER (Maggi, 2015)

Mass balance

$$\begin{split} n\frac{\partial S_{\beta}}{\partial t} &= -\operatorname{div} v_{\beta} \qquad v_{\beta} = -k_{\beta}\frac{\partial \psi}{\partial z} \\ \beta &= \text{phase} \end{split}$$

Reaction equilibrium

Adsorption isoterms

Cellular metabolism

Calibration procedure for the hydraulic parameters of the infiltration process

first laboratory analysis

soil textures = input data in ROSETTA

Domain geometry ($S = 25m^2 \times D = 1m$) free-drainage boundary condition at the bottom

preliminary estimation of porosity n, permeability k and retention curve coefficients α and m (Van Genuchten,1980)

calibration (PEST) $(k_{cal}' \rightarrow \alpha, m \rightarrow k_{cal}")$

Calibration procedure for the hydraulic parameters of the infiltration process

first laboratory analysis

soil textures = input data in ROSETTA

Domain geometry $(S = 25m^2 \times D = 1m)$ free-drainage boundary condition at the bottom

preliminary estimation of porosity n, permeability k and retention curve coefficients α and m (Van Genuchten,1980)

calibration (PEST) $(k_{cal}' \rightarrow \alpha, m \rightarrow k_{cal}")$

© Costa et al. all rights reserved

Open-loop simulation VS model calibrated using a 90 days temporal window (27/10/2018 to 24/01/2019)

© Costa et al. all rights reserved

Results (1/4) slide (14/19)

Comparison between different temporal window for calibration (90 days VS 153 days)

© Costa et al. all rights reserved

Results (2/4) slide (15/19)

Comparison between different depths of influence of the active roots transpiration (10 cm VS 30 cm)

© Costa et al. all rights reserved

Results (3/4) slide (16/19)

Results of tracer dispersion modelling using a dispersion coefficient of $D = 1 \times 10^{-09} \text{ m}^2/\text{s}$

© Costa et al. all rights reserved

Results (4/4) slide (17/19)

TAKE-HOME MESSAGES

- The one-dimensional modelling of the infiltration process achieves the best results in the upper layers of the soil (up to 0.3 m).
- The extension of the depth of influence of the active roots transpiration up to 0.3 m increases the accuracy in simulating the soil volumetric water content in the periods subsequent to rainfall events
- At greater depths the accuracy of the one-dimensional modelling of the infiltration process tends to be limited by the three-dimensional nature of the phenomenon.

NEXT STEPS

- Consider a more detailed time description of the meteorological forcing (rainfall and evapotranspiration): from daily to hourly
- To extend the areal domain: from "punctual" to "areal" (based on the spatial heterogeneity of the infiltration process)
- To consider a three-dimensional approach for the subsequent modelling of the glyphosate evolution

ACKNOWLEDGEMENTS

My acknowledgements go to Alto Trevigiano Servizi s.r.l. and Piave Servizi s.r.l. for supporting this research and to all the research group of the *D. Tonini - Centre of Hydrology* and of the DAFNAE and DICEA departments for the work done together

