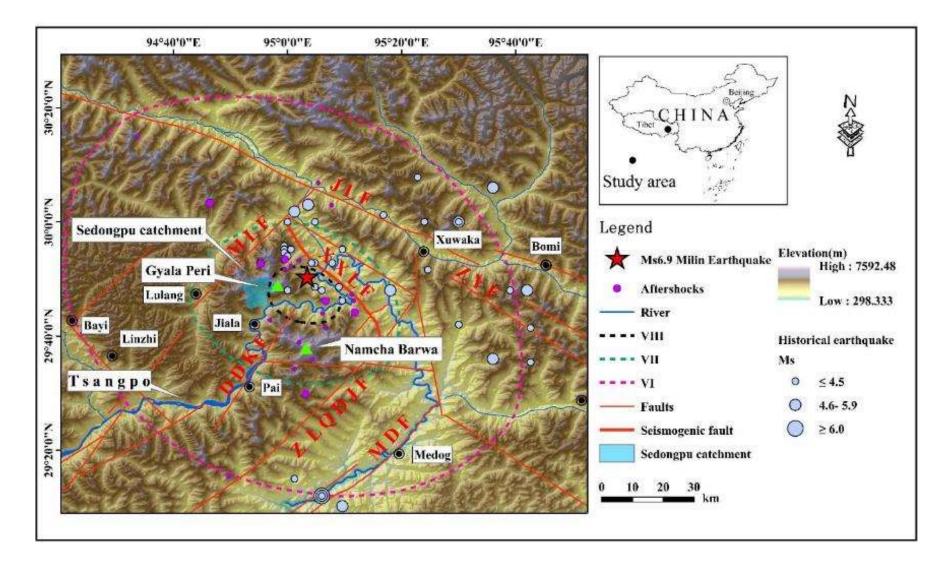
EGU General Assembly 2020 Vienna, Austria

Risk analysis of the 2018 Sedongpu glacial debris flows in the southeastern Tibet

Kaiheng HU, Xiaopeng ZHANG, Jinbo TANG

khhu@imde.ac.cn

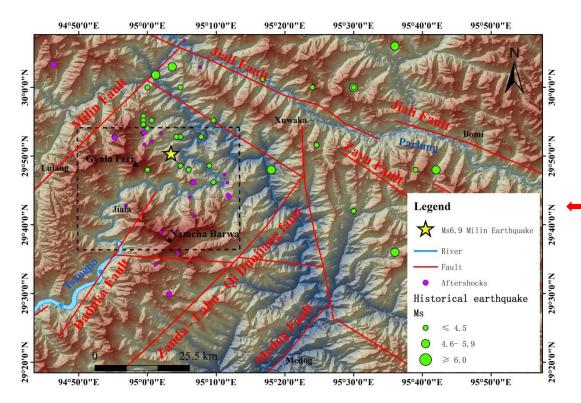
May. 5, 2020 Key Laboratory of Mountain Hazards and Earth Surface Processes Institute of Mountain Hazards and Environment, CAS

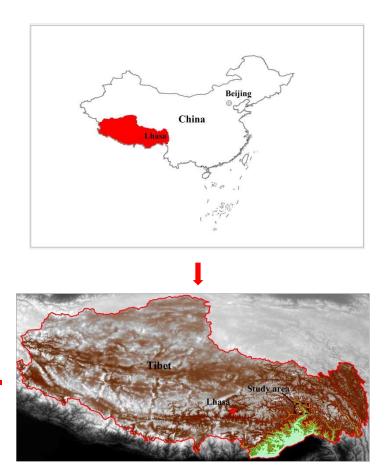


Sedongpu glacial debris flows
Earthquake and Dammed lakes
Risk analysis

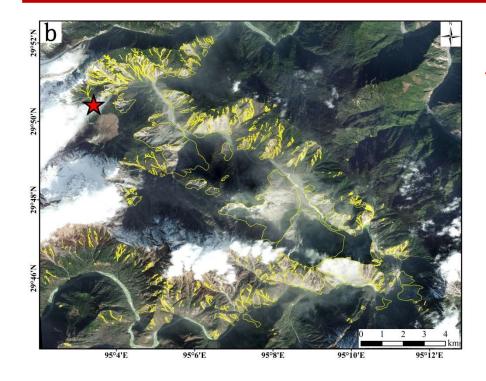
Conclusions

Sedongpu debris flows

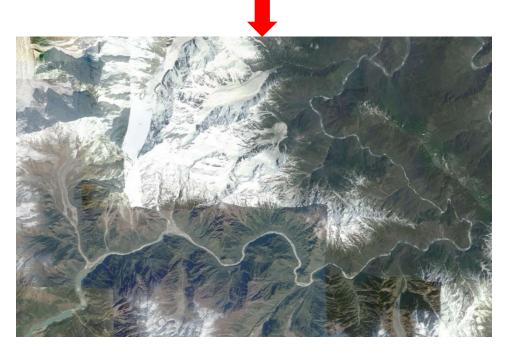

Location: 29° 47' 7", 94° 55' 24" Area: 66.7km²


Elevation: 2750~7294 m

	Date	Blockage of the river
Historical interpretation of	2014	Partial
-	2017.10.22	Complete
debris flows	2017.11.3	No
	2017.12.21	Complete
	2018.1	Complete
 Historical interpretation of debris flows 2017.10.22 2017.11.3 No 2017.12.21 Complete 2018.1 2018.1.016 2018.10.16 Complete 2018.10.29 Complete 2018.10.29 Complete 	No	
A COMPANY & COMPANY	2018.10.16	Complete
CAR AND	2018.10.29	Complete
Watershed		
	0. 25	


2017 Ms 6.9 Milin earthquake

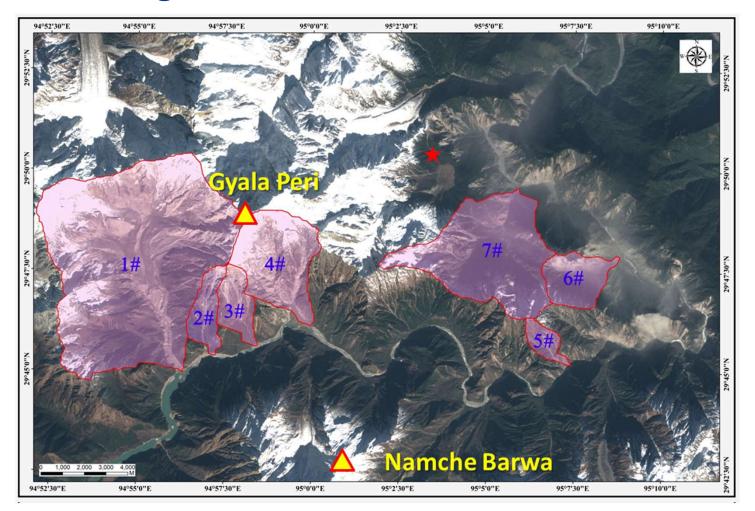
- **Time**: Nov. 18, 2017 (Beijing time 6:34)
- **Magnitude**: Ms 6.9
- **Epicenter location**: 29.75N, 95.02E
- **Focal depth**: 10 km

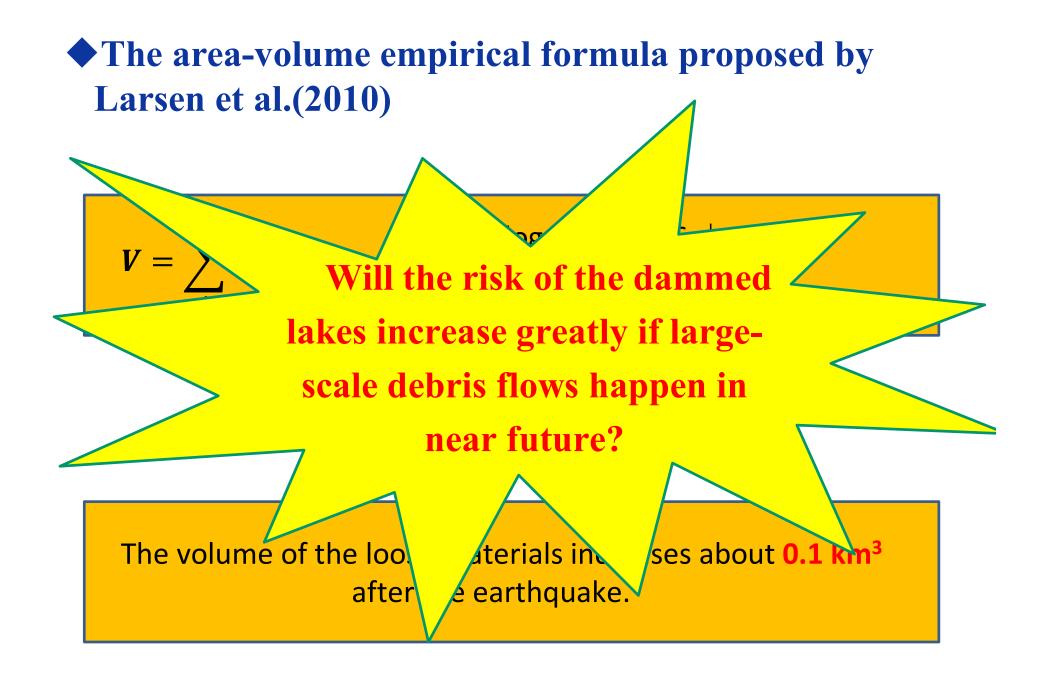

Induced geo-hazards

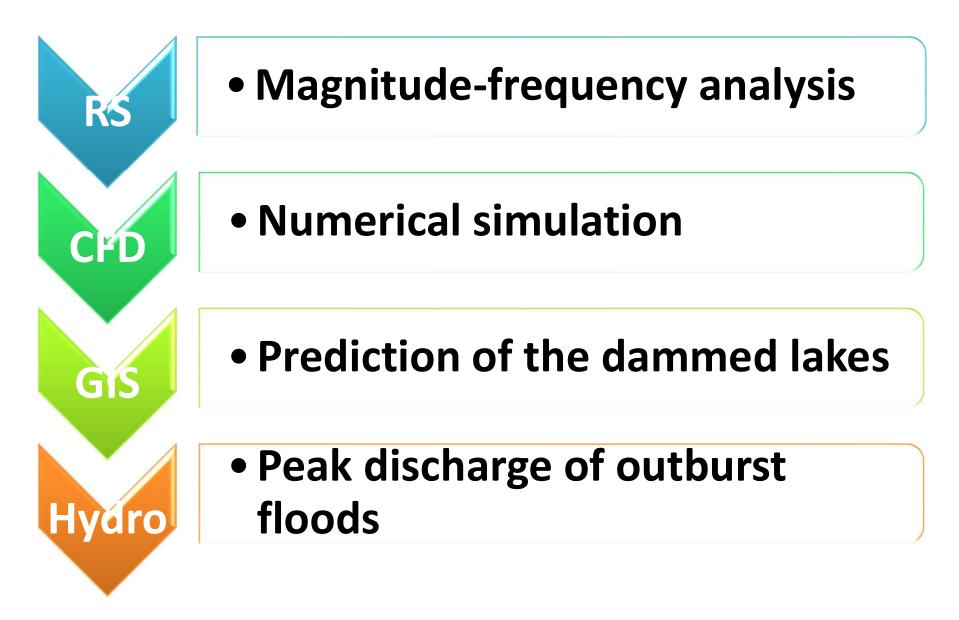
Post-earthquake satellite image from Sentinel on Dec. 10, 2017

Pre-earthquake satellite image from Google Earth on Mar. 31, 2012

The earthquake yields massive loose materials in seven catchments in the area and then augument the magnitude of sequent glacial debris flows in Sedongpu.


Dammed lakes


The largest event happened at 22:00 on Oct. 16, 2018. The debris-flow dam was 77 m high. The glacial dammed lake with an impounded water of 0.6 billion m³ broke out and caused an outburst flood of peak discharge ~ 30,000 m³/s on October 19.

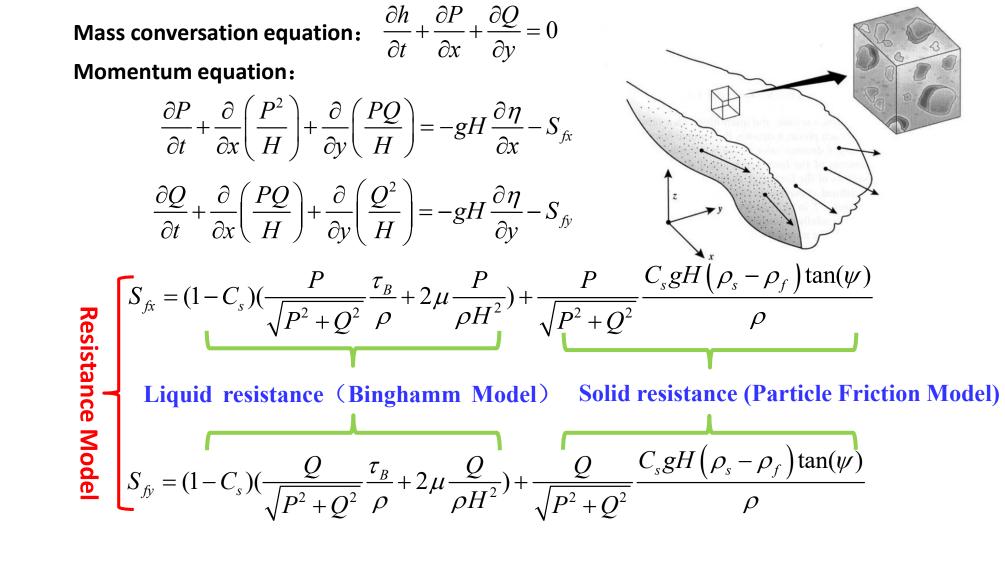

Risk analysis before the outburst in Oct.

Strong activity of induced geo-hazards will last at least 5 years.
 The most dangerous hazards are debris flows.

Flow chart of risk analysis

► Magnitude-frequency

The empirical formula to estimate the overall volume proposed by Zhou et al. (1991)


 $V_c = 19 T_s Q_c / 72$ $Q_c = \{ [0.526(\gamma_s - 1) / (\gamma_s - \gamma_c)] (0.58P - 14) + 0.5 \} F$

The event in a certain period during **2013** and **2014**, the overall debris flow volume was approximately **4.5 million** cubic meter The event in **2017**, the overall debris flow volume was approximately **13 million** cubic meter

>Numerical Simulation of debris flows

Resistance Calculation Model

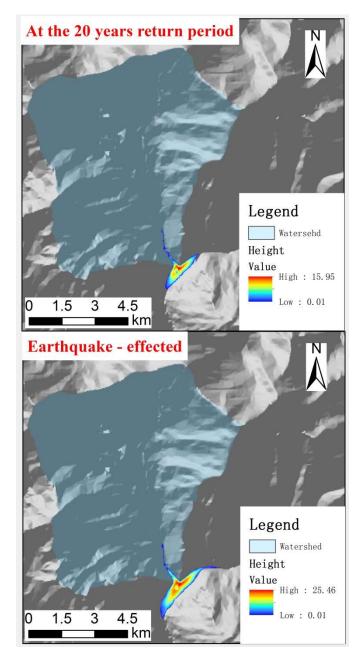
Sedongpu case

Take some debris flow gullies in the study area as examples, and make a numerical simulation on different scales.

(1) Calculation of density of debris flow :

$$\gamma_D = P_{05}^{0.35} P_2 \gamma_v + \gamma_0$$

(2) Calculation of Yield Stress and Viscosity Coefficient of debris flow:


Yield Stress :

Viscosity


$$\tau_{B} = 0.098 \exp(8.45 \frac{C_{f} - C_{f0}}{C_{fm}} + 1.5)$$
Coefficient: $\eta = \eta_{0} (1 - k \frac{C_{f}}{C_{fm}})^{-2.5}$

 At the 20 years return period: total volume up to 4.5 Mm³
 Earthquake-effected:

total volume up to 13 Mm³

> 6# and 7# debris flow gullies

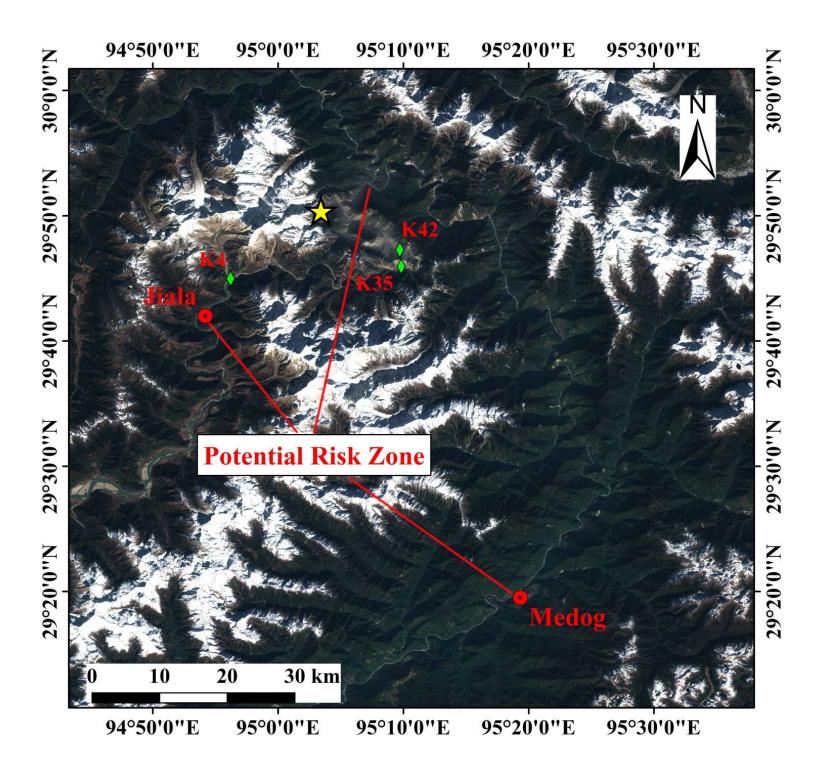
Earthquake-effected:

6#:total volume up to 13.64 Mm³ 7#:total volume up to 4.62 Mm³ Large slope due to strong changes in local topography, these two case can't form large dammed lakes.

Prediction of the dam height

Based on the calculation results, dams scale were estimated under the conditions of the 20 years return period and earthquake-effected of debris flow.

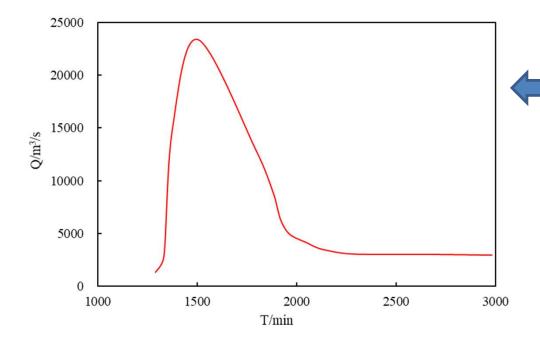
Number	Scale	Dam height increase(m)	Backwater area(km²)	Original capacity(m ³)	Increase capacity(m ³)	Total capacity(m ³)
Sedongp	a 20-year	15	2.4	0.77×10 ⁷	2.13×10 ⁷	2.9 ×10 ⁷
u	earthquake- effected	25	4.41	0.77 ×10 ⁷	5.58×10 ⁷	6.35×10 ⁷


Considering the debris flow events under the influence of the earthquake, the backwater of the lake will affect the rope bridge crossing the river and some roads in the upstream, Jiala village.

Outburst flood

The empirical formula for the peak discharge forecast for dam breach proposed by Froechlich (1995)

$Q_{max} = 0.607 H_w^{1.24} V_w^{0.295}$
$\bar{b} = 0.1803 K_o V_w^{0.32} H_W^{0.19}$


	Destruction level	Total volume (V _w : m ³)	Outburst volume (V _w : m ³)	Depth of water level (H _w : m)	average width of the breach (b: m)	Peak discharge (Q _{max} : m ³ /s)
К4	50%	2.9×10 ⁷	2.4×10 ⁷	18	100.53	3287.68
	100%	2.9×10 ⁷	2.9×10 ⁷	36	183.40	8211.29
	50%	6.35×10 ⁷	5.58×10 ⁷	23	137.97	5714.63
	100%	6.35×10 ⁷	6.35×10 ⁷	46	164.03	14022.54
K35	50%	2.7×10 ⁷	1.65×10 ⁷	27	96.31	4866.73
	100%	2.7×10 ⁷	2.7×10 ⁷	58	130.38	14524.18
K42	50%	3.1×10 ⁷	1.93×10 ⁷	49.5	113.63	10807.83
	100%	3.1×10 ⁷	3.1×10 ⁷	89	174.40	29968.00

Outburst flood discharge estimation

There are many empirical models for predicting landslide dam outburst flood discharge

Source	Forumla	Year	Sample number
Kirkpatrick	$Q_{max} = 1.268(H_w + 0.3)^{2.5}$	1977	34
SCS	$Q_{max} = 16.6 H_w^{1.85}$	1981	32
U.S. Bureau of Reclamation	$Q_{max} = 19.1 H_w^{1.85}$	1988	13
	$Q_{max} = 48 H_w^{1.63}$	1988	13
Hagen	$Q_{max} = 0.54(S - H_d)^{0.5}$	1982	7
Singh and Snorrason1	$Q_{max} = 13.4 H_d^{1.89}$	<mark>1984</mark>	28
Singh and Snorrason2	$Q_{max} = 1.776S^{0.47}$	<mark>1984</mark>	34
MacDonald and Langridge- Monopolis	$Q_{max} = 3.85 (H_w V_w)^{0.41}$	1984	36
Costa1	$Q_{max} = 1.122S^{0.57}$	<mark>1985</mark>	
Costa2	$Q_{max} = 0.981(SH_d)^{0.42}$	<mark>1985</mark>	30
Costa3	$Q_{max} = 2.634 \ (SH_d)^{0.44}$	1988	30
Evens	$Q_{max} = 0.72 V_w^{0.53}$	1986	39
Froechlich	$Q_{max} = 0.607 H_w^{1.24} V_w^{0.295}$	1995	31
Webby	$Q_{max} = 0.0443 g^{0.5} V_w^{0.365} H_d^{1.4}$	1996	

Outburst flood hydrograph measured by a hydrologic station 168 km downstream of the Sedongpu dam

Formula	Kirkpatrick	SCS	U.S. Bureau of Reclamation		Hagen	Singn & Snorrason1	Singn & Snorrason2	
Q _{max} (m ³ /s)	66614	51300	59026	57045	13500	49269	24183	
误差	+35162	+19847	+27573	+2559 3	-17953	+17816	-7270	
模型	MacDonald and Langridge	Costa1	Costa2	Evens	Froechlic h	Webby		
Q_{max} (m ³ /s)	92307	115783	<mark>30079</mark>	33048	52146	98537		
误差	+60854	+84330	<mark>-1373</mark>	+1596	+20694	+67085		

the1985Costa'swidelshowsbestagreementthewiththemeasuredstata.

- Following the 2017 quake, several high-magnitude glacial debris flows happened at Sedongpu in 2018.
 A comprehensive methodology is developed to assess the potential hazard of the glacial-debris-dammed lake before the outburst.
- Although the prior risk analysis underestimated the debris flow volume and outburst flood peak discharge, the method shows a good application.
 With regard to the Sedongpu event, the 1985 Costa's model shows best agreement with the measured data.

Thank you for your attention!

http://www.imde.ac.cn/