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Motivations

(M)t numerically 3 Turbulent air-sea fluxes are determined from
treated gé 5 atmosphere, MOST-derived bulk formulae,
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MOST: Monin-Obukhov similarity theory. SL: surface layer.
MO-ASL: MOST atmosphere layer. MO-OSL: MOST ocean
layer. VSL: viscous sublayer.



Motivations

(M)t numerically 3 Turbulent air-sea fluxes are determined from
treated gé § atmosphere, MOST-derived bulk formulae,
< 3 O .
. dex ) = which:
z, = 10 parameterized N .
2 » Neglect the ocean and viscous parts of the
: SL.
constant |
o L
profile 38
zl~ -1 :
numerically ' 5 T S
\ treated 1S5 E
0le|zg reate | < %-8
| u IS
x(Z) =x(0)=x(z})  x(z)

MOST: Monin-Obukhov similarity theory. SL: surface layer.
MO-ASL: MOST atmosphere layer. MO-OSL: MOST ocean
layer. VSL: viscous sublayer.



Motivations

(M)t numerically 3 Turbulent air-sea fluxes are determined from
treated gé § atmosphere, MOST-derived bulk formulae,
< 3 O .
. dex ) = which:
z, = 10 parameterized N .
2 » Neglect the ocean and viscous parts of the
! SL.
: » Lead to numerical irregularities
constant . inbetween subparts of the SL.
profile 38
zZl~ -1 f) :
numerically | = 5 <
d | § 2 g
| treat I [}
82X1|zg reate | < % kS
| u IS
x(Z) =x(0)=x(z})  x(z)

MOST: Monin-Obukhov similarity theory. SL: surface layer.
MO-ASL: MOST atmosphere layer. MO-OSL: MOST ocean
layer. VSL: viscous sublayer.



Motivations

Turbulent air-sea fluxes are determined from

z(m) numerically § = ]
treated g% 5 atmosphere, MOST-derived bulk formulae,
E EE .
ox| ) 5 2 which:
zl ~ 10 =
5 | & » Neglect the ocean and viscous parts of the
=] ' <L
i fe) L
: < SL.
ar -4 o (A —_ . . « e
Z =10 E | AVSL » Lead to numerical irregularities
MV 2 B S OVSL .
'~ -0 E ) = inbetween subparts of the SL.
] | O . . .
3 : :g Introducing an idealized framework for
1. _ : : . _ .
Z~ 1 ‘ T extending existing formulae to two-sided
' numerically - SF £
| ! g £ g H H .
M |88 5§ versions, ensuring:
1 1 u c .
» regularity;
(@O X sHianty
MOST: Monin-Obukhov similarity theory. SL: surface layer. | 2 Comprehensiveness

MO-ASL: MOST atmosphere layer. MO-OSL: MOST ocean
layer. VSL: viscous sublayer.



Comprehensive surface layer parameterization
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Top: O surface layer profiles resulting from different closure types; bottom: zoom around z = 0.



Impact on air-sea fluxes

Impact on turbulent fluxes via (u}, 6%), from integrating uy, and 6, profiles on the SL.
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Analogous for [Juy||. 1y stability function; LZ,: atm. Obukhov length
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Analogous for [Juy]|. tp: stability function; LZ,: atm. Obukhov length; \g =
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Impact on turbulent fluxes via (u}, 6%), from integrating uy, and 6, profiles on the SL.
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Analogous for [Juy]|. tp: stability function; LZ,: atm. Obukhov length; \g = ; LY: ocean Obukhov length.
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Impact on turbulent fluxes via (u}, 6%), from integrating uy, and 6, profiles on the SL.
New contributions from the viscous sublayers and the ocean SL:
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Analogous for [Juy]|. tp: stability function; LZ,: atm. Obukhov length; \g = \/5%52’; LY: ocean Obukhov length.
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Conclusions

» Introduced an idealized framework for
extending existing bulk formulae to
two-sided versions.

» Adapted to coupled
ocean-atmosphere numerical
simulations, which use 6(z = —1m)
as ocean temperature, yet with bulk
closures derived from surface
measurements.

» Considerable room for enhancement

through retuning and new physics

Time-averaged (year 2006) relative difference on turbulent scales (eg rad |at|0n penetration s
arising from using two-sided bulk closures, using ERA-Interim

(atmosphere) and GLORYS2v4 (ocean) near-surface data. WaVe-ind uced su rface deformatlon)



