Two-sided turbulent boundary layer parameterizations for assessing ocean – atmosphere fluxes

F. Lemarié ¹ C. Pelletier ^{1,2} E. Blayo ¹ M.-N. Bouin ³ J.-L. Redelsperger ⁴

EGU2020: Sharing Geosciences Online, May 2020

¹Univ. Grenoble Alpes, Inria, LJK, Grenoble, France

²ELIC/TECLIM, UCLouvain, Louvain-la-Neuve, Belgium

³Centre de Météo Marine, Météo-France, Brest, France

⁴CNRS, LOPS, IRD, Univ. Brest Occidentale, IFREMER, Brest, France

MOST: Monin-Obukhov similarity theory. SL: surface layer. MO-ASL: MOST atmosphere layer. MO-OSL: MOST ocean layer. VSL: viscous sublayer.

Turbulent air-sea fluxes are determined from atmosphere, MOST-derived bulk formulae, which:

MOST: Monin-Obukhov similarity theory. SL: surface layer. MO-ASL: MOST atmosphere layer. MO-OSL: MOST ocean layer. VSL: viscous sublayer.

Turbulent air-sea fluxes are determined from atmosphere, MOST-derived bulk formulae, which:

Neglect the ocean and viscous parts of the SL.

MOST: Monin-Obukhov similarity theory. SL: surface layer. MO-ASL: MOST atmosphere layer. MO-OSL: MOST ocean layer. VSL: viscous sublayer.

Turbulent air-sea fluxes are determined from atmosphere, MOST-derived bulk formulae, which:

- Neglect the ocean and viscous parts of the SL.
- ► Lead to numerical irregularities inbetween subparts of the SL.

MOST: Monin-Obukhov similarity theory. SL: surface layer. MO-ASL: MOST atmosphere layer. MO-OSL: MOST ocean layer. VSL: viscous sublayer.

Turbulent air-sea fluxes are determined from atmosphere, MOST-derived bulk formulae, which:

- Neglect the ocean and viscous parts of the SL.
- ► Lead to numerical irregularities inbetween subparts of the SL.

Introducing an idealized framework for extending existing formulae to two-sided versions, ensuring:

- regularity;
- ► comprehensiveness.

Comprehensive surface layer parameterization

SL-comprehensive \mathbf{u}_h and θ_v profiles are derived from:

- 1. turbulent flux conservation;
- a choice of roughness length parameterization and viscous profiles;
- 3. transmission conditions (e.g., viscous stress) at z = 0;

Regularity is ensured by design, except at z = 0, which is a physical interface.

Top: θ surface layer profiles resulting from different closure types; bottom: zoom around z=0.

Impact on turbulent fluxes via (u_a^*, θ_a^*) , from integrating u_h and θ_v profiles on the SL.

$$\frac{\kappa \Delta \theta}{\theta_a^*} = \ln \left(\frac{z_a^1}{z_{\theta}^{a,r}(\mathbf{x}_a^*)} \right) - \psi_h \left(\frac{z_a^1}{L_O^a(\mathbf{x}_a^*)} \right)$$

Analogous for $\|\mathbf{u_h}\|$. ψ_h : stability function; L_O^a : atm. Obukhov length

Impact on turbulent fluxes via (u_a^*, θ_a^*) , from integrating $\mathbf{u_h}$ and θ_v profiles on the SL.

New contributions from the viscous sublayers

$$\frac{\kappa \Delta \theta}{\theta_a^*} = \ln \left(\frac{z_a^1}{z_\theta^{a,r}(\mathbf{x}_a^*)} \right) - \psi_h \left(\frac{z_a^1}{L_O^2(\mathbf{x}_a^*)} \right) + (1 + \lambda_\theta) \left(e - 1 \right)$$

Analogous for $\|\mathbf{u}_{\mathbf{h}}\|$. $\psi_{\mathbf{h}}$: stability function; L_O^a : atm. Obukhov length; $\lambda_\theta = \frac{\sqrt{\rho_a}c_p^a}{\sqrt{\rho_o}c_p^o}$

Impact on turbulent fluxes via (u_a^*, θ_a^*) , from integrating $\mathbf{u_h}$ and θ_V profiles on the SL.

New contributions from the viscous sublayers and the ocean SL:

$$\frac{\kappa \Delta \theta}{\theta_a^*} = \ln \left(\frac{z_a^1}{z_\theta^{a,r}(\mathbf{x}_a^*)} \right) - \psi_h \left(\frac{z_a^1}{L_O^a(\mathbf{x}_a^*)} \right) + (1 + \lambda_\theta) \left(\mathbf{e} - \mathbf{1} \right) + \lambda_\theta \ln \left(\frac{z_o^1}{z_\theta^{o,r}(\mathbf{x}_a^*)} \right) - \lambda_\theta \psi_h \left(\frac{-z_o^1}{L_O^o(\mathbf{x}_o^*)} \right)$$

Analogous for $\|\mathbf{u_h}\|$. ψ_h : stability function; L_O^a : atm. Obukhov length; $\lambda_\theta = \frac{\sqrt{\rho_a}c_\rho^a}{\sqrt{\rho_o}c_\rho^a}$; L_O^c : ocean Obukhov length.

Impact on turbulent fluxes via (u_a^*, θ_a^*) , from integrating $\mathbf{u_h}$ and θ_V profiles on the SL.

New contributions from the viscous sublayers and the ocean SL:

$$\frac{\kappa \Delta \theta}{\theta_a^*} = \ln \left(\frac{z_a^1}{z_\theta^{a,r}(\mathbf{x}_a^*)} \right) - \psi_h \left(\frac{z_a^1}{L_O^a(\mathbf{x}_a^*)} \right) + (1 + \lambda_\theta) \left(\mathbf{e} - \mathbf{1} \right) + \lambda_\theta \ln \left(\frac{z_o^1}{z_\theta^{o,r}(\mathbf{x}_a^*)} \right) - \lambda_\theta \psi_h \left(\frac{-z_o^1}{L_O^o(\mathbf{x}_o^*)} \right)$$

Analogous for $\|\mathbf{u_h}\|$. ψ_h : stability function; L_O^a : atm. Obukhov length; $\lambda_{\theta} = \frac{\sqrt{\rho_a c_p^a}}{\sqrt{\rho_O c_p^a}}$; L_O^o : ocean Obukhov length.

- Two-sided closures lead to dampened fluxes.
- ► Results from using one-sided roughness parameterizations in a two-sided context.
- Calls for calibrating bulk formulae anew, taking into account the two-sided closure above.

Conclusions

Time-averaged (year 2006) relative difference on turbulent scales arising from using two-sided bulk closures, using ERA-Interim (atmosphere) and GLORYS2v4 (ocean) near-surface data.

- ► Introduced an idealized framework for extending existing bulk formulae to two-sided versions.
- Adapted to coupled ocean-atmosphere numerical simulations, which use θ(z = −1m) as ocean temperature, yet with bulk closures derived from surface measurements.
- Considerable room for enhancement through retuning and new physics (e.g. radiation penetration, wave-induced surface deformation).