Fe(II)-catalyzed transformation of Fe (hydr)oxides in particle-size soil organic matter from amended agricultural soils
D2215 | EGU2020-14873

Beatrice Giannetta
University of Turin | Grugliasco, Italy | beatrice.giannetta@unito.it

Ramona Balint
University of Turin | Grugliasco, Italy

Daniel Said-Pullicino
University of Turin | Grugliasco, Italy

César Plaza
CSIC ICA | Madrid, Spain

Maria Martin
University of Turin | Grugliasco, Italy

Claudio Zaccone
University of Verona | Verona, Italy

© Authors. All rights reserved
Which are the effects of organic matter on the extent and pathway of Fe$^{2+}$-catalyzed transformation?
The Fe$^{2+}$-catalyzed transformation is an unexplored pathway for C mobilization or sequestration.
HYPOTHESIS:
Soil organic matter (SOM) quantity, quality, and distribution between different pools can affect Fe(III) oxides transformation under reducing conditions by altering Fe atom exchange kinetics.

MAIN OBJECTIVES:
• To determine the effect of organic amendments on the Fe(II)-induced abiotic transformation of Fe(III) minerals in an agricultural soil (simulated temporary anoxia).

• To investigate the influence of Fe-OM associations on mineral transformations across particle-size SOM pools.
Fe speciation in SOM pools under agricultural soils subjected to biochar and organic fertilizers amendments.

- Unamended agricultural soil (UN).
- Municipal solid waste amended soil (MC).
- Biochar amended soil (BC).
- Biochar and municipal solid waste amended soil (BC+MC).
- Bulk, fine sand (FSa) and fine silt plus clay (FSi+Cl) fractions.

Plaza et al. 2016

© Authors. All rights reserved
04 Physical Fractionation

SOIL SAMPLE
(air-dried, 2mm sieved)

Mechanical sieving
Ultrasonic dispersion

Sieving centrifugation

DISPERSED SOIL

Organic fragments
2000-200 μm

Organic fragments
200-50 μm

Organic fragments
50-20 μm

Particulate organic matter
(POM > 20 μm)

Organo-mineral complexes
<20 μm

Lopez-Sangil and Rovira, 2013
Giannetta et al. 2019

© Authors. All rights reserved
05 Fe(II) SPIKING

physical fractionation

Bulk FSa FSi+Cl
06 Fe SPECIATION: Fe EXAFS

Basic Experiment:

- X-ray beam → Ion chamber detector → Sample → Ion chamber detector

XANES / NEXAFS
- Oxidation state, Molecular structure, Electronic structure.

EXAFS Oscillations
- Pre-edge
- Edge

EXAFS
- Quantitative Local Structure.

- Fe₂O₃
- Fe₂O₃

© Authors. All rights reserved
RESULTS: Fe EXAFS Bulk soils

<table>
<thead>
<tr>
<th>Sample</th>
<th>n. components</th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
<th>Component 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN</td>
<td>3</td>
<td>CHLORITE</td>
<td>LEPIDOCROCITE</td>
<td>FE(III)-CITRATE</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>3 and 4</td>
<td>CHLORITE</td>
<td>LEPIDOCROCITE</td>
<td>FE(III)-CITRATE</td>
<td>FERRIHYDRITE</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>CHLORITE</td>
<td>LEPIDOCROCITE</td>
<td>FE(III)-CITRATE</td>
<td></td>
</tr>
<tr>
<td>BC+MC</td>
<td>4</td>
<td>CHLORITE</td>
<td>LEPIDOCROCITE</td>
<td>FE(III)-CITRATE</td>
<td>FERRIHYDRITE</td>
</tr>
</tbody>
</table>

- PCA
- TT
- SPOIL
- R-values
- F-test
- LCF

© Authors. All rights reserved
RESULTS: Fe(II)-CATALYZED OXIDE TRANSFORMATION IN THE FSi+Cl FRACTION

- FSi+Cl fraction before Fe(II) addition: 3 components.
- FSi+Cl fraction after Fe(II) addition: 4 components.

Ferrihydrite was transformed to lepidocrocite. The percentage of lepidocrocite remained stable in both the unamended and amended soils.
RESULTS: Fe(II)-CATALYZED OXIDE TRANSFORMATION IN THE FSa FRACTION

FSa

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Chlorite</th>
<th>Lepidocrocite</th>
<th>Fe(III)-Citrate</th>
<th>Ferricyanide</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN + Fe(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC + Fe(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC + Fe(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC + MC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC + MC + Fe(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UN: lepidocrocite formation.

MC: lepidocrocite formation hindered.

BC: biochar functions as an electron shuttle, thus favoring the reduction of the Fe(III) oxyhydroxides.

BC + MC: intermediate situation.

FSa fractions represent an understudied pool of SOM reactive to Fe mineral transformation.

© Authors. All rights reserved
SOM quantity, quality and distribution between different pools can affect Fe(III) oxides transformation under reducing conditions by altering Fe atom exchange kinetics.

• The increase in SOM due to organic amendments can contribute to limiting abiotic Fe(II)-catalyzed ferrihydrite transformation.
• This effect of amendment on Fe oxide transformation is less evident in fine with respect to coarse particle-size fractions.
• In this fraction, Fe(II) addition mainly lead to the transformation of ferrihydrite to lepidocrocite, however this depended on organic amendment type.
• With respect to compost, biochar addition favored the formation of both lepidocrocite and magnetite, possibly due to the role of aromatic constituents in electron shuttling.
Thank you for your attention

Visit us on www.raer.unito.it

or contact us by email to beatrice.giannetta@unito.it