Fe(II)-catalyzed transformation of Fe (hydr)oxides in particlesize soil organic matter from amended agricultural soils D2215 | EGU2020-14873

Beatrice Giannetta

University of Turin | Grugliasco, Italy | beatrice.giannetta@unito.it

Ramona Balint University of Turin | Grugliasco, Italy

Daniel Said-Pullicino University of Turin | Grugliasco, Italy

César Plaza CSIC ICA | Madrid, Spain

Maria Martin University of Turin | Grugliasco, Italy

Claudio Zaccone University of Verona | Verona, Italy

01 AQUEOUS Fe(II)-CATALYZED FERRIHYDRITE TRANSFORMATION

- Which are the effects of organic matter on the extent and pathway of Fe²⁺-catalyzed transformation?
- The Fe²⁺-catalyzed transformation is an unexplored pathway for C mobilization or sequestration.
 © Authors. All rights reserved

02 OBJECTIVES

HYPOTHESIS:

Soil organic matter (SOM) quantity, quality, and distribution between different pools can affect Fe(III) oxides transformation under reducing conditions by altering Fe atom exchange kinetics.

MAIN OBJECTIVES:

- To determine the effect of organic amendments on the Fe(II)-induced abiotic transformation of Fe(III) minerals in an agricultural soil (simulated temporary anoxia).
- To investigate the influence of of Fe-OM associations on mineral transformations across particle-size SOM pools.

03 EXPERIMENTAL DESIGN: SOIL SAMPLES

Fe speciation in SOM pools under agricultural soils subjected to biochar and organic fertilizers amendments.

- Unamended agricultural soil (UN).
- Municipal solid waste amended soil (MC).
- Biochar amended soil (BC).
- Biochar and municipal solid waste amended soil (BC+MC).
- Bulk, fine sand (FSa) and fine silt plus clay (FSi+CI) fractions.

Control (C)
Biochar (BC)
Mineral fertilizer (MF)
Biochar and mineral fertilizer (BC+MF)
Municipal solid waste compost (MC)
Biochar and municipal solid waste compost (BC+MC)
Sewage sludge (SS)
Biochar and sewage sludge (BC+SS)

Plaza et al. 2016

04 PHYSICAL FRACTIONATION

Lopez-Sangil and Rovira, 2013 Giannetta et al. 2019

05 Fe(II) SPIKING

06 Fe SPECIATION: Fe EXAFS

© Authors. All rights reserved

Elettra Sincrotrone Trieste

Experimental station: XAFS.

07 RESULTS: Fe EXAFS Bulk soils

			n. components	COMPONENT 1	COMPONENT 2	COMPONENT 3	COMPONENT 4
		UN	3	CHLORITE	LEPIDOCROCITE	FE(III)-CITRATE	
		МС	3 and 4	CHLORITE	LEPIDOCROCITE	FE(III)-CITRATE	FERRIHYDRITE
С		BC	3	CHLORITE	LEPIDOCROCITE	FE(III)-CITRATE	
		BC+MC	4	CHLORITE	LEPIDOCROCITE	FE(III)-CITRATE	FERRIHYDRITE

Giannetta et al. 2020

08 RESULTS: Fe(II)-CATALYZED OXIDE TRANSFORMATION IN THE FSi+CI FRACTION

- FSi+Cl fraction before Fe(II) addition: 3 components.
- FSi+Cl fraction after Fe(II) addition: 4 components.

Ferrihydrite was transformed to lepidocrocite. The percentage of lepidocrocite remained stable in both the unamended and amended soils.

09 RESULTS: Fe(II)-CATALYZED OXIDE TRANSFORMATION IN THE FSa FRACTION

FSa

UN: lepidocrocite formation.

MC: lepidocrocite formation hindered.

BC: biochar functions as an electron shuttle, thus favoring the reduction of the Fe(III) oxyhydroxides.

BC+MC: intermediate situation.

FSa fractions represent an understudied pool of SOM reactive to Fe mineral transformation.

10 CONCLUSIONS

SOM quantity, quality and distribution between different pools can affect Fe(III) oxides transformation under reducing conditions by altering Fe atom exchange kinetics.

- The increase in SOM due to organic amendments can contribute to limiting abiotic Fe(II)-catalyzed ferrihydrite transformation.
- This effect of amendment on Fe oxide transformation is less evident in fine with respect to coarse particle-size fractions.
- In this fraction, Fe(II) addition mainly lead to the transformation of ferrihydrite to lepidocrocite, however this depended on organic amendment type.
- With respect to compost, biochar addition favored the formation of both lepidocrocite and magnetite, possibly due to the role of aromatic constituents in electron shuttling.

Thank you for your attention

Visit us on www.raer.unito.it

or contact us by email to *beatrice.giannetta@unito.it*

