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Aims
[ To detect and characterize extreme events in a coastal ecosystem by combining in situ high-frequency observations and high-
resolution numerical simulations

J To describe the interannual variability of extreme events in a context of climate change

1 To quantify the links between extreme low salinity episodes and both large and local scale processes, using weather regimes,
precipitations and river runoffs as proxies of hydro-climate forcing

Nutrients

e QOceanin situ observations

COAST-HF- Iroise: high-frequency measurements
(20min sampling of physical and biogeochemical parameters)

SOMLIT-Brest: low-frequency measurements (weekly

1. Time series in the Bay of Brest 2. Methodology

* A seasonal focus: winter months (December, January, February, March)
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1.1. Locations of the sampling sites considered in our study

Positive and negative phases of the North Atlantic Oscillation
(NAOp, NAON), the Atlantic Ridge (AR) and the Scandinavian

Blocking Regime (BLK)
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3. Identification and characterization of extreme low salinity events

2003 2005 2007 2009 2011 2013 2015 2017

2.1. Extreme low salinity events detected under threshold on in situ data

© 4. Weather regimes and extreme low
@ salinity events | eRbret

Days prior to modelled events (BACH) - 2000-2012
—==- Days prior to modelled events (MARC) - 2010-2018
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Winter 2004-2005 was characterized as an "
- exceptional cold and dry winter [5]
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IROISE salinity series

Winter 2013-2014 was marked by 12 storm events [6]

0.0 ==

T T
0.50 0.75

0.25
Correlation with NAOp weather regime

-1.00 -0.75 -0.50 -0.25  0.00 1.00 000 025 050 075 100

-1.00 -0.75 -0.50 -0.25
Correlation with NAOn weather regime

4.1. Kernel density estimation of the correlations of atmospheric
sea level pressure with weather regimes (NAOp, NAOn, AR, and

: i MARC sainty serfes m—RoisE BLK) for winter periods and during 14 days before extreme events
4 o ancevens . - for in situ observations and numerical simulations
2010 2011 2012 2013 2014 2015 2016 2017 2018 12 -
3.1 Detection of low salinity extreme events of the observed and simulated o The NAOp and the negative phase of the AR are the most

salinity data

divided

in two time periods corresponding to numerical

simulations: (a) BACH simulation and (b) MARC simulation

The detection and characterization of the low salinity events for
observed and simulated data present similar results in terms of
occurrence, duration and intensity.

Number of extreme low salinity events
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frequent weather regimes over the 14-days period before
extreme low salinity events. These two winter weather
regimes induce more precipitations in the north-eastern
Atlantic.

Weather regimes
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Observed data COAST-HF Simulated data MARS3D
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Sudieg peried | 2000-2018 2000-2012 20202018 extreme low salinity events between simulated and observed 4.2. Pearson’s correlations between winter precipitations
Mean duration (days) ’ . .
Minimum salinity intensity (psu) 23,5 29,7 25,5 data (COAST‘HF'erISe buoy) and the four weather regimes
Number of events 72 32 46
% of observed events in simulations X 78% 100%

3.2 Global characteristics of detected observed and simulated data

4. Conclusion

1 In situ high frequency observation combined with high resolution models have a great potential to investigate the long

term effects of extreme events on the coastal marine ecosystems

(1 At a local scale this variability is driven by river unoffs and precipitations (not shown)

1 At a larger scale this variability can be related with the North Atlantic Oscillation (NAOp) and the negative phase of the
Atlantic Ridge (AR), i.e. processes that are related to changes in the atmospheric circulation

1 A relation between extreme weather episodes and low salinity events occurrence in the region is observed and highlight a
slight increase since 2010
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Linked with large scale weather regimes and the extreme
weather episodes (storms), the duration and occurrence of
low salinity events are increasing since 2010.
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4.3. Annual number of extreme weather events (black), observed
extreme low salinity events (blue) and cumulative duration of low
salinity events (red) at COAST-HF-Iroise buoy
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