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Example Application I
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Hydrology Simulations
® Topography (macro scale)

® Porous soil structure (fine scale)
® Scales range from mm to km

(Macroscale)

(Microscale)

K. Simon, Discrete Multiscale Complexes, EGU 2020
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Example Application II cen

Mechanics of Composite Materials

Multiple scales and high contrast.

® Macroscopic stress is
determined through
microscopic structures

® Scales range from pm
to m

Glass fibers in a synthetic resin matrix.

K. Simon, Discrete Multiscale Complexes, EGU 2020 = E A



Example Applications III | §

Meta materials

® Materials with negative refraction index

® Ring structure made of nonmagnetic metals, interlocked cells of
glass fibre circuits, vertical connecting metallic wires (metallic
structure and split-ring resonators)

® Scales range from nm to m

V-D=p (GauB law)
V-B =0 (GauB law for magnetism)

1
—0tB+V x E=0 (induction law)
c

1
— (47j + 0:D) =V x H (circuital law)
c

65‘5)50E =D (material law)

;L(Té)H = B (material law)

. Simon, Discrete Multiscale Complexes, EGU 2020 = DA



Scales

Models are derived from
reasonable assumptions
(scale dependent) and are
valid if the interaction
with other scales is not too
strong.

= Ideally: Use model
with limited range of
scales as basis for
simulation!

time

10% 4

10719

Models on different scales

Continuum Mechanics
(Navier-Stokes etc)

Kinetic theory
(Boltzmann)

Molecular dynamics
(Newton theory)

Im 10°m

length
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Scales

Models are derived from
reasonable assumptions
(scale dependent) and are
valid if the interaction
with other scales is not too
strong.

= Ideally: Use model
with limited range of
scales as basis for

Models on different scales

time

10%y 4

Continuum Mechanics
(Navier-Stokes etc)

Kinetic theory
(Boltzmann)

Molecular dynamics.
(Newton theory)

(HPE, QG etc)

Atmosphere

i ion! Quant
simulation! NG
t t +
14 Im 109m  length
= Not always possilble!
(scale interaction)
K. Simon, Discrete Multiscale Complexes, EGU 2020 & = = Q>



Scales

cen

Challenge with many Scales

In order to represent a function with smallest wave O(e) in d dimensions we
need at least

# unknowns = O(e™?) (shannon 18] — (memory consumption)
and

# flops = O(¢7"%), r = 1 — (time consumption)

K. Simon, Discrete Multiscale Complexes, EGU 2020
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Scale interaction

Scale Coupling
in Climate Simulations

How do the scales talk?

Dynamical Core

upscaling 5& E
_____ > . .
: ’ Parametrizations
r v interpolation
(resolved) (not resolved)
scales > O(H)
O(H) > scales > O(h)
- |
|
coarse truncation
scale

= One direction of information transfer is easy ...

K. Simon, Discrete Multiscale Complexes, EGU 2020

Question: What fine-scale information is relevant on

coarse scales?
=]
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The Problem Cen‘

Many interesting systems are/have State of the Arts in operational codes

experimentally hardly accessible (as a whole)
o . .
multiple scales with complex scale interactions ?;g?lziSﬁz:ﬂ“;i;ztﬁ;;?fgni I:;iz?:jf S

transient ® Scale coupling often done only heuristically

dominated by advection (additional difficulty) simulate effective behavior correctly?

large systems with algebraic/PDE constraints

K. Simon, Discrete Multiscale Complexes, EGU 2020 [l o> 10



The Problem ce n‘

Many interesting systems are/have State of the Arts in operational codes

® experimentally hardly accessible (as a whole)
o . .
® multiple scales with complex scale interactions ?;2?1};1Sptzginsligézigus;?fgni I;l;iz?:jf S

o .
transient ® Scale coupling often done only heuristically

¢ dominated by advection (additional difficulty) simulate effective behavior correctly?

® large systems with algebraic/PDE constraints

compute ice fraction

Example
70% ice cover
Common sea ice ;
parametrization enters heat fluxes
on coarse scale.
What’s wrong with that?
K. Simon, Discrete Multiscale Complexes, EGU 2020 = = = Q> 10



A Simple 1D Example
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Well... let’s find the effective model (homogeniziation)

We have F¢(uc) = 0 (e represents smallest scales) so maybe we can

Find F* and u* so that u. — u* and F. — F* (in some sense) in the limit
of large range of scales, scale separation with

F*(u*)=0.

This is called effective model.

K. Simon, Discrete Multiscale Complex:

, EGU 2020




A Simple 1D Example
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Toy Example

What is the effective model of this PDE as € — 07
T
(a2

zel=1a,b],0<q<ae L*(]0,1])

K. Simon, Discrete Multiscale Complexes, EGU 2020
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A Simple 1D Example

cen

Toy Example

What is the effective model of this PDE as € — 07
T
(a2

zel=1a,b],0<q<ae L*(]0,1])
This?

— Remember: this is sort of what is being done...

K. Simon, Discrete Multiscale Complexes, EGU 2020
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A Simple 1D Example
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What does math tell us?
® [u|;: < C and therefore u® — u in H'(I) weakly

K. Simon, Discrete Multiscale Complex:

, EGU 2020
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A Simple 1D Example

What does math tell us?
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® [u|;: < C and therefore u® — u in H'(I) weakly

® With a®(x) := a(x/e) we have a® — ma(a) in L®(I) weak-=

K. Simon, Discrete Multiscale Complexes, EGU 2020
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A Simple 1D Example

What does math tell us?

cen

® Define £° :=a

® [u|;: < C and therefore u® — u in H'(I) weakly
® With a®(x) := a(x/e) we have a® — ma(a) in L®(I) weak-=
. e_d

€
dxu

K. Simon, Discrete Multiscale Complexes, EGU 2020
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A Simple 1D Example

cen

What does math tell us?

® [u|;: < C and therefore u® — u in H'(I) weakly

® With a®(x) := a(x/e) we have a® — ma(a) in L®(I) weak-=
® Define £° := asd%cus

0 Since a*] . < C and [uf] gy < C = €] 2 < C

K. Simon, Discrete Multiscale Complexes, EGU 2020
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A Simple 1D Example

cen

What does math tell us?

® [u|;: < C and therefore u® — u in H'(I) weakly
® With a®(x) := a(x/c) we have a® — ma(a) in L*(I)
® Define £° := a® L uf

=0 3
© Since o] < C and [u] gy < C = €] < C

weak-#

® Equation says: diwff = f and so €51 < C = & — € in L2(I) strongly

K. Simon, Discrete Multiscale Complexes, EGU 2020
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A Simple 1D Example

cen

What does math tell us?

® [u|;: < C and therefore u® — u in H'(I) weakly
® With a®(x) := a(x/c) we have a® — ma(a) in L*(I)
® Define £° := asd%cu6

© Since 0% < C and i€y < C = €], < C

® Equation says: diwff = fandso |€°]| ;. < C =& —
® Therefore 265 — ma (L)€ in L2(I) weakly

weak-#

€ in L2(I) strongly

K. Simon, Discrete Multiscale Complexes, EGU 2020 =
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A Simple 1D Example

cen

What does math tell us?

® [u|;: < C and therefore u® — u in H'(I) weakly

® With a®(x) := a(x/e) we have a® — ma(a) in L®(I) weak-=

® Define £° := asd%cu

© Since o] < Cand |uf|p < C =[] <C

® Equation says: iff = f and so €51 < C = & — € in L2(I) strongly
® Therefore lés — mA( )¢ in L?(I) weakly

@ But (1) and L& = $u° so that -Lu = ma(2)¢ (uniqueness of limits)
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A Simple 1D Example

cen

What does math tell us?

® [u|;: < C and therefore u® — u in H'(I) weakly

® With a®(x) := a(x/e) we have a® — ma(a) in L®(I) weak-=

® Define £° := asd%cu

© Since 0% < C and i€y < C = €], < C

® Equation says: iff = f and so €51 < C = & — € in L2(I) strongly
® Therefore lés — mA( )¢ in L?(I) weakly

@ But (1) and L& = $u° so that -Lu = ma(2)¢ (uniqueness of limits)
® On the other hand we have d%cf =f

.. and so:

K. Simon, Discrete Multiscale Complexes, EGU 2020 =
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A Simple 1D Example

What is the effective model of this PDE as ¢ — 07

zel =la,b],ae L*([0,1])
Proposition

In general ma(a) >

mu(a

3 i.e., averaging leads to excessive diffusion!
K. Simon, Discrete Multiscale Complexes, EGU 2020
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A simple 1D Example
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Toy problem: Find solution of w(0) = u(1) =0

0.2 0.4 0.6 0.8 1
X
(courtesy: P.Henning, KTH, Sweden)

K. Simon, Discrete Multiscale Complex

es, EGU 2020
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A simple 1D Example

Toy problem: Find solution of w(0) = u(1) =0

cen

€ x
where a(x) = 2 + sin(27z) with ¢ = 275,

A standard P;-FEM estimate gives ||u — up| g1 < h|az| - ~ h/e

K. Simon, Discrete Multiscale Complex:

, EGU 2020
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A simple 1D Example cen

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives ||u — up| g1 < h|az| - ~ h/e

0.08 h/e=32.000 -2
0.07 -3
0.06 5
0.05 I
.| 2]
2 g -6
S 0.04 3
£ 7
0.03 g
0.02 9
0.01 10
€
11k
0 02 0.4 0.6 08 -0 -8 -6 -4 -2
. log, )

(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example cen

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives ||u — up| g1 < h|az| - ~ h/e

1 -
0.08 h/e=16.000 -2 .
0.07 -3
0.06 5
0.05 3
. [}
2 g -6
S 0.04 °
£ 7
0.03 g
0.02 9
0.01 10
€
11k
0 02 04 06 08 -0 -8 -6 -4 -2
. log,h)

(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example Cen‘

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives ||u — up| g1 < h|az| - ~ h/e

1 — .
0.08 h/e=8.000 -2 <
0.07 -3
0.06 5
0.05 g -5
A 2]
g g
= 0.04 @
= 7
0.03 g
0.02 g
0.01 -10
3
11k
0 0.2 0.4 0.6 0.8 - 8 6 -2
x og,(h)
(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example Cen‘

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives ||u — up| g1 < h|az| - ~ h/e

- : —
0.08 We=4.000 -2 o
0.07 -3
0.06 5
0.05 .
A 2]
g g
= 0.04 @
£ 7
0.03 g
0.02 g
0.01 -10
€
—11k
0 0.2 0.4 0.6 08 -0 8 6 -2
x og,(h)
(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example cen

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives ||u — up| g1 < h|az| - ~ h/e

-1 -
.
0.08 h/e=2.000 -2 i
0.07 -3
0.06 5
0.05 3
. 2]
£ 5 -6
S 0.04 °
£ 7
0.03 g 5
0.02 9
0.01 -10
€
il
0 02 04 0.6 08 -0 8 6 4 2
. 0, ()

(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example cen

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives ||u — up| g1 < h|az| - ~ h/e

-1 .
0.08 h/e=1.000 -2
0.07 -3
0.06 5
0.05 5 5
A 2]
z Z 6
5 0.04 !
£ 7
0.03 g
0.02 9
0.01 -10
€
-~k
0 0.2 0.4 0.6 0.8 -0 -8 |*5h -4 -2
; 0g, (h)

(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example cen

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives ||u — up| g1 < h|az| - ~ h/e

0.08 h/e=0.500 -2
0.07 -3
0.06 5
0.05 5 5
A 2]
z Z 6
5 0.04 s
£ 7
0.03 g
0.02 9
0.01 -10
€
-~k
0 0.2 0.4 0.6 0.8 -0 -8 |*5h -4 -2
; 0g, (h)

(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example cen

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives |u — up| g1 < hag| o ~ h/e

-1

0.08 hle=0.250 -2

0.07 1 -3

0.06 5 4

0.05 ° -5

= £ -6
5 0.04 s

S

0.03 g

0.02 1 9

0.01 1 -10

1L it
% 0.2 0.4 0.6 0.8 1 -0 -8 -6 -4 -2

x log, ()

(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example Cen‘

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives |u — up| g1 < hag| o ~ h/e

-1

0.08 h/e=0.125 1 -2

0.07 1 -3

0.06 5 4

0.05 ° -5

= £ -6
5 0.04 s

S 7

0.03 8 4

0.02 1 g

0.01 1 -10

1L it
% 0.2 0.4 0.6 0.8 1 -1 -8 -6 -4 -2

x log, ()

(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example cen

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives |u — up| g1 < hag| o ~ h/e

-1

0.08 h/e=0063 -2

0.07 1 -3

0.06 5 4

0.05 ° -5

= £ -6
5 0.04 s

S

0.03 g

0.02 1 9

0.01 1 -10

1L it
% 0.2 0.4 0.6 0.8 1 -0 -8 -6 -4 -2

x log, ()

(courtesy: P.Henning, KTH, Sweden)
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A simple 1D Example cen

Toy problem: Find solution of w(0) = u(1) =0

where a(x) = 2 + sin(27z) with ¢ = 275,
A standard P;-FEM estimate gives |u — up| g1 < hag| o ~ h/e

-1

0.08 h/e=0.031 1 -2

0.07 1 -3

0.06 5 4

0.05 ° -5

= £ -6
5 0.04 s

S 7

0.03 g 4

0.02 1 g

0.01 1 -10

1L it
% 0.2 0.4 0.6 0.8 1 -0 -8 -6 -4 -2

x log, ()

(courtesy: P.Henning, KTH, Sweden)
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A bit more intuition from FEM theory...

Galerkin orthogonality:

cen

— wup, is best approximation of u in Vhin energy norm

K. Simon, Discrete Multiscale Complexes, EGU 2020
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A bit more intuition from FEM theory...

cen

Galerkin orthogonality:

— wup, is best approximation of u in Vhin energy norm
Céa:

lw —unlgr < inf flu—ovnfg
vpeVh

— wy, is quasi-best approximation of w in V" in H*

K. Simon, Discrete Multiscale Complexes, EGU 2020 = A
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A bit more intuition from FEM theory...

cen

Galerkin orthogonality:

— wup, is best approximation of u in Vhin energy norm
Céa:

lw —unlgr < inf flu—ovnfg
vpeVh

— wy, is quasi-best approximation of w in V" in H*
Aubin-Nitsche: We roughly have for P;-FEM

w—unllp2 ~ [ — w51 ~ Jlu — un |3
L H H

inf |
Uhth

K. Simon, Discrete Multiscale Complexes, EGU 2020 = A
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A bit more intuition from FEM theory... Cen‘

Galerkin orthogonality:

— wup, is best approximation of u in Vhin energy norm
Céa:

le —unllgr < inf flu—ovng
'uhEVh

— wy, is quasi-best approximation of w in V" in H*
Aubin-Nitsche: We roughly have for Pi-FEM

lw = unlp2 ~ Ju = oG ~ = unlin

inf |
UhEVh’

K. Simon, Discrete Multiscale Complexes, EGU 2020 [ A 27



A simple 1D Example

cen

Homogenized models are often not available.

Without effective equation and € << 1 microscale computations only in

limited domains. = We need coarse decompostion and localization.

At least: Numerical methods should reflect homogenization principles...

good part is understood for elliptic problems ...

K. Simon, Discrete Multiscale Complexes, EGU 2020
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Another Example

cen"

Accuracy under resoluion constraints? (courtesy: E. Christner et al., KIT, Germany)

Subgrid data represented well if resolution is prohibitively high...

K. Simon, Discrete Multiscale Complexes, EGU 2020
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Idea of Multiscale FEM

cen

Idea of MsFEM [Hou & Wu, ’99]

MsFEM
Model:

V. (A°Vu') = f
Idea: To capture the asymptotic

structure of the solution modify the
basis

V- (ATVES) =0 in K
©i%or = @ilox

K. Simon, Discrete Multiscale Complexes, EGU 2020

P,-FEM

wi(z)

a=uxg

30



Idea of Multiscale FEM

A priori estimates for model problem

Theorem (Hou & Wu, ’99)

Note: [uf| o = O™ 1) 5> wase —o0.

K. Simon, Discrete Multiscale Complexes, EGU 2020

Fails if lower order terms are involved.

=)
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Multiscale Differential Complexes

cen’

Observation
Pactical problems involve systems with many unknowns
(not only scalar variables)

Different parts of the system are in different spaces
(velocity w, vorticity V X u, divergence V - u)

Parts are related through (differential) operators

Parts are in different function spaces related in an exact
sequence

Still the system exhibits multiscale features
Stability is crucial

Violation of stability constraints causes spurious modes
(numerical derivatives small, despite approximating
oscillatory function)

The latter can cause large dispersion errors in
dynamic models (and other instabilities).

Checkerboard Instability

7.21

— =

= 3w

s

b

-

P; — Py elements do not

satisfy a stability condition!

K. Simon, Discrete Multiscale Complexes, EGU 2020 =

A 32



Multiscale Differential Complexes
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These spaces are related in a closed (differential) complex

L2A0(Q) —L £2A1(Q) —L s £2A2(Q) —L s L2A3(Q)
® exterior differentials d are vieved as closed unbounded operators

e Note that this is a complex, i.e. d2 =0 and R(d) c N(d)

We look at a multiscale version of this complex:
with norms

L2A0(Q, A?) — Ly 12A1(Q, AL) —2 s 12A2(0, A2) — L [2A3(Q, A3)

Hu||L2Ak(Q’A§) = le Aé:’u,
for uniformly positive A’g : L2AR — [2AF

K. Simon, Discrete Multiscale Complexes, EGU 2020

L2Ak(Q)
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Multiscale Differential Complexes cen‘;

The domain complex is the complex of the domains of
d: L2AR(Q, AF) — L2AR+1(Q, AFTLY.

HAO(d, A%) —% s HAT(d, AL) —L s HAZ(d, AZ) —L 5 HA3(d, A?)

which are endowed with the graph norms

2 2 k+1
ol (a,a = ey oy + [VAE du

and are therefore Hilbert spaces.

2

L2Ak+1

Theorem (Poincaré Inequality and Hodge decomposition)

K. Simon, Discrete Multiscale Complexes, EGU 2020 =) A 34



The Weighted Hodge-Laplace Problem

stable multiscale methods.

cen’

— Finding Helmholtz decompositions in weighted spaces helps to understand and design

How to find such decompositions?

K. Simon, Discrete Multiscale Complexes, EGU 2020
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The Weighted Hodge-Laplace Problem

stable multiscale methods.

cen’

— Finding Helmholtz decompositions in weighted spaces helps to understand and design

How to find such decompositions?

Solve the weighted Hodge-Laplace euqation in each segement of the domain complex:
oy V¥ 1y VX v A2y 2 3
H(grad, A?) — H(curl, A}) — H(div, AZ) —— L*(Q, A2)
which secks for f € L2AF

u e D(L¥)

{we HAF A HAR* | due HAMY* and d*u e AR}
such that u L $* and (f)k harmonic forms)

LFu = a*AF 1 du + dAF 1 d*u = f — Pay f

Note: Solutions are differential forms!
K. Simon, Discrete Multiscale Complexes, EGU 2020

A
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The Weighted Hodge-Laplace Problem

cen

® In each segment of the complex this equation takes a different form
® The problem is well posed

® There is a strong, a primal weak form and a mixed weak form

K. Simon, Discrete Multiscale Complexes, EGU 2020
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The Weighted Hodge-Laplace Problem

cen

® In each segment of the complex this equation takes a different form
® The problem is well posed

® There is a strong, a primal weak form and a mixed weak form

It turns out that only the mixed weak form is suitable
for discretiztaion!!!

K. Simon, Discrete Multiscale Complexes, EGU 2020
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The Weighted Hodge-Laplace Problem
k=0

cen‘

This is the ordinary diffusion equation in weak form as a Neumann problem with

such that

D(L) = {ue H(grad) | V- AcVu € L? ,8pu = 0}

JVU “AcVu = fv(f— Pgo) wve H(grad)

Ju=0

Boundary conditions are natural!

— Neumann boundary conditions:

Onu = 0 on 00

K. Simon, Discrete Multiscale Complexes, EGU 2020

A

37



The Weighted Hodge-Laplace Problem
k=1

such that

This is the weighted vector Laplace equation in weak form with

u € H(curl) n Ho(div) ,V x u € Ho(curl) , B:V - u € H(grad)

JTB;IU—JVT-U=O, T € H(grad)

fv-Va+ijv-A5qu=Jv~f, v € H(curl)

with o = B:Vu.
Boundary conditions are natural!

— magnetic boundary conditions:

u-n=0 and V xuxn=0ondd

K. Simon, Discrete Multiscale Complexes, EGU 2020

A
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The Weighted Hodge-Laplace Problem
k=2

cen

This is the weighted vector Laplace equation in weak form with
such that

u € Ho(curl) n H(div) , AcV x u € H(curl) ,V - u € Ho(grad)

JTAs_lo'—JVXT~u=O, T € H(curl)

J-v~V><a+jV~vBEV-u=fv~f, v € H(div)

with 0 = A:V X u.
Boundary conditions are natural!

— electric boundary conditions:

uxn=0 and V-u=0o0nod

K. Simon, Discrete Multiscale Complexes, EGU 2020
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The Weighted Hodge-Laplace Problem
k=3

cen

This is the weighted Diffusion equation in mixed weak form with
such that

D(L) = {u € Ho(grad) | V - A-Vu € L?}

jTA;lU—jV'T'U=0, T e H(div)

fv~V~a=fv-f, veL?

with 0 = A:V X u.
Boundary conditions are natural!

— Dirichlet boundary conditions

u = 0 on 0S2

K. Simon, Discrete Multiscale Complexes, EGU 2020
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Discretization of Hodge-Laplace Problem

cen’

diagram

Finite element exterior calculus (FEEC) says stable discretizations can be obtained if the
v
H(grad) —— H(curl)

Vv x . V-
s H(div) s 12
Hr(ngsrad)l lnr(ncsurl) J{Hggiv) lan
v Vv x v
Qrs > Ned('® RT{® DQo
commutes, i.e. we must seek bounded co-chain projections.

Can we mimic a rigorous construction of stable elements in this framework
for multiscale discretizations?

K. Simon, Discrete Multiscale Complexes, EGU 2020
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Discretization of Hodge-Laplace Problem

cen‘

Examples of Stable Discretizations
Q;” AF-family
B : V X
\
NCl NCl DQO
S, AF-family
E @ V i i- i-
AAS AA] DPc,
K. Simon, D te Multiscale Complexes, EGU 2020 = = = Q>
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Multiscale Discretization of Hodge-Laplace
Exampe proof only for k£ = 2

L §
Look at one coarse cell K and denote Ned; and RTy the k — th standard
lowest order Nédélec basis (Raviart-Thomas resp.):

H (curl, K)-basis

H(div, K)-basis
Find oy, € Nedy, + Hy(curl, K) and
up € V x Nedy, + Ho(div, K) s.th.

Find o; € Hy(curl, K') and
uj € RT; + Hy(div, K) s.th.
A;lak—quk=0
V X o+ VBV -y =
V x Nedp+uf; —uf,

A;laj—quj =0
Vxo;+VBV-u; =0
for 7 € Hy(curl, K) and

v e Hy(div, K).

for 7 € Hy(curl, K) and
v e Hy(div, K).

K. Simon, Discrete Multiscale Complexes, EGU 2020
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Multiscale Discretization of Hodge-Laplace
Exampe proof only for k£ = 2

L §
Look at one coarse cell K and denote Ned; and RTy the k — th standard
lowest order Nédélec basis (Raviart-Thomas resp.):

H (curl, K)-basis

H(div, K)-basis
Find oy, € Nedy, + Hy(curl, K) and
up € V x Nedy, + Ho(div, K) s.th.

Find o; € Hy(curl, K') and
uj € RT; + Hy(div, K) s.th.
A;lak—quk=0
V X o+ VBV -y =
V x Nedp+uf; —uf,

A;laj—quj =0
Vxo;+VBV-u; =0
for 7 € Hy(curl, K) and

v e Hy(div, K).

for 7 € Hy(curl, K) and
v e Hy(div, K).
K. Simon, Discrete Multiscale Complexes, EGU 2020
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Multiscale Discretization of Hodge-Laplace
Only k£ = 2 - Outline of Proof

Idea of proof (note: no harmonic forms):

cen’
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Multiscale Discretization of Hodge-Laplace
Only k£ = 2 - Outline of Proof

cen‘

Idea of proof (note: no harmonic forms):
® The H(div)-basis corrector satisfies o; = 0

uj,j =1,...,6 is a Raviart-Thomas basis with an additional corrector u¥ with zero
normal flux condition

¢ Note that we do not care about o

K. Simon, Discrete Multiscale Complexes, EGU 2020
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Multiscale Discretization of Hodge-Laplace L o
Only k£ = 2 - Outline of Proof Ce n

Idea of proof (note: no harmonic forms):
® The H(div)-basis corrector satisfies o; = 0

uj,j =1,...,6 is a Raviart-Thomas basis with an additional corrector u;" with zero
normal flux condition

¢ Note that we do not care about o

Looking at the problem for o; we must make sure that we map into the appropriate
space spanned by the modified Raviart-Thomas basis

K. Simon, Discrete Multiscale Complexes, EGU 2020
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Multiscale Discretization of Hodge-Laplace
Only k = 2 - Outline of Proof Ce n

| S

Idea of proof (note: no harmonic forms):
® The H(div)-basis corrector satisfies o; = 0
uj,j =1,...,6 is a Raviart-Thomas basis with an additional corrector u;" with zero
normal flux condition
¢ Note that we do not care about o
Looking at the problem for o; we must make sure that we map into the appropriate
space spanned by the modified Raviart-Thomas basis
Note that ufz — uz‘z = 0 (geometric argument)
® Note that V x Nedg is a gradient with vanishing divergence
This defines a corrector a,’: for Ned,, and enforces V - ug =0

K. Simon, Discrete Multiscale Complexes, EGU 2020 =
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Multiscale Discretization of Hodge-Laplace

Only k£ = 2 - Outline of Proof Ce n

| S

Idea of proof (note: no harmonic forms):

® The H(div)-basis corrector satisfies o; = 0

® uj,j=1,...,6is a Raviart-Thomas basis with an additional corrector u;" with zero
normal flux condition

¢ Note that we do not care about o

Looking at the problem for o; we must make sure that we map into the appropriate

space spanned by the modified Raviart-Thomas basis

Note that “:2 — uz‘z = 0 (geometric argument)

® Note that V x Nedg is a gradient with vanishing divergence

® This defines a corrector a,’: for Ned,, and enforces V - ug =0

— Therefore, we have V x Ned'® < RT(".
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A

44



Multiscalc Discretization of Hodge-Laplace L o
Only k£ = 2 - Outline of Proof Ce n

Idea of proof (note: no harmonic forms):

® The H(div)-basis corrector satisfies o; = 0
uj,j =1,...,6 is a Raviart-Thomas basis with an additional corrector u;" with zero
normal flux condition

¢ Note that we do not care about o
Looking at the problem for o; we must make sure that we map into the appropriate
space spanned by the modified Raviart-Thomas basis

* Note that “:2 — uz‘z = 0 (geometric argument)

® Note that V x Nedy is a gradient with vanishing divergence

® This defines a corrector ak for Ned,, and enforces V - ug =0

— Therefore, we have V x Ned'® < RT(".
— Now using the definition of the DOF's (face moments) and by means of
Stokes theorem

VxIeg =MV x g, ge H(curl)

The Projections are H (curl)- and H(div)-bounded due to well-posedness of
the Hodge-Laplace (here with essential boundary conditions).

Q.E.D.

K. Simon, Discrete Multiscale Complexes, EGU 2020 =
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Multiscale Discretization of Hodge-Laplace
Example k = 2

Modified Nédélec Basis

cen

L S

_J
~ L >

;\\— oS L =4

Basis on a coarse cell K, left: streamlines
K. Simon, Discrete Multiscale Complexes, EGU 2020
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Multiscale Discretization of Hodge-Laplace
k=2

cen

Modified Raviart-Thomas Basis

Basis on a coarse cell K, left: streamlines
K. Simon, Discrete Multiscale Complexes, EGU 2020
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Multiscale Discretization of Hodge-Laplace L o
Standard Problem £k = 2 Ce n

[—
o
<
igma Magnitude
sigma Magnifude

o
o
o}
o
@
i

' 050
l 00011

|
o
o

U Magnitude
1
S

U Magnitude

left: high resolution standard solution; right: low resolution solution with standard basis
(wrong magnitudes and/or directions)

K. Simon, Discrete Multiscale Complexes, EGU 2020 = A



Multiscale Discretization of Hodge-Laplace
Multiscale Problemk = 2

()]
m
-

*

sigma Magnitude
1
o

I—OQ

—05

0
I\DODH

u Magnitude

left: high resolution standard solution; right: low resolution solution with multiscale basis
(almost correct magnitudes and directions)

. 0.00099+

q_.

=~

Magnitude

sigma

u Magnitude

024
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Multiscale Discretization of Hodge-Laplace .
Summary and Outlook Ce n

® Proof can be extended to the whole complex

® Basis has information of fine scale structure

® We can show that classical multiscale FEMs are special cases of out construction
(k=0,3)

® oversampling is possible (to reduce resonance errors)

® Accuracy proof through homogenization

® Many applications possible (Climate, Mechanics, Maxwell, MHD ...)

® Embedd into semi-Lagrangian reconstruction framework (data-driven setting)

® Code is C++ and parallel (documented, uses Deal.ii, p4est, MPI, Trilinos, TBB, VTK)

® Using or C++ code we computed up to 200 million DoFs on a 12 nodes cluster (scales
better with number of nodes)

Again: This Framework defines a rigorous way to add multiscale correctors
to elements constructed by FEEC — not only the ones shown.

— Paper to come but Code is already on Github
https://github.com/konsim83/MPI-MSFEC!

K. Simon, Discrete Multiscale Complexes, EGU 2020 [ = E DA 49


https://github.com/konsim83/MPI-MSFEC

Thank you!

cen

Questions? Comments?

I V1
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