Photochemistry versus biological activity towards organics in cloud water

Amina Khaled, Minghui Zhang, Pierre Amato, Anne-Marie Delort, Barbara Ervens

Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France

Amina.Khaled@uca.fr

Introduction and background

- Water-soluble organic compounds (WSOC) constitute a significant portion of the total atmospheric organic carbon mass, ranging from 14% to 64%.
- \blacktriangleright Bacterial concentration reach values between 0.8 · 10³ and 2.4 · 10⁵ cells mL⁻¹ in cloud water.
- For some organics, biodegradation by bacteria is suggested to be more important than chemical radical processes
 (e.g., OH, NO₃) Amato et al., 2005; 2007; Deguillaume et al., 2008; Delort et al., 2010; Husarova et al., 2011; Vaïtilingom et al., 2010; 2011
- Biodegradation is assumed to only occur efficiently in cloud water as efficient cell growth and metabolism is restricted to the time cells spend in liquid water

Only a few studies estimated the loss of total WSOC by microbial processes Vaïtilingom et al., 2013; Fankhauser et al., 2019; Ervens & Amato, 2020

Our goal for this study is to determine the conditions under which

- 1. Bacterial activity is most important compared to chemical losses of WSOCs
- 2. Metabolic processes represent major atmospheric sinks of organics

Model description

- We use a multiphase chemistry box model with detailed gas and aqueous phase chemistry (75 species, 44 gas phase reactions, 31 aqueous reactions)
- ➢ In addition, we consider an organic compound 'Org' undergoes chemical radical reactions in the gas and aqueous phases and is biodegradation by bacteria in the aqueous phase only .
 - 263 droplets/cm³ (gas phase)

- LWC= $6.8 \cdot 10^{-7} \text{ cm}^3(\text{aq})/\text{cm}^3(\text{air})$
- Polydisperse drop size distribution: 11 size classes with drop diameters $5 20 \ \mu m$
- Only one size class includes bacteria cells ($D = 20 \ \mu m$; $N_{droplet} = cell \ concentration = \ 0.01 \ cm^{-3}$)

Physicochemical properties of 'Org' varied in model sensitivity studies: $k_{chem,aq}, k_{chemg} = chemical rate constants in aqueous and gas phase <math>k_{bact}$: rate constant of biodegradation in the aqueous phase K_{H} : Henry's law constant

To generalize our results for any organic concentration, we express the parameter ranges as Rates (k [Concentration]):

$$R_{bact}[s^{-1}] = k_{bact}\left[\frac{L}{Cell \, s}\right] \times C_{cell,aq}\left[\frac{Cell}{L}\right]$$
$$R_{chemaq}[s^{-1}] = k_{radical,aq}\left[L \, mol^{-1} \, s^{-1}\right] \times \left[radical\right]_{aq}\left[mol \ L^{-1}\right]$$
$$R_{chemgas}[s^{-1}] = k_{radical,gas}\left[cm^{3} \, s^{-1}\right] \times \left[radical\right]_{gas}\left[cm^{-3}\right]$$

Simulations are performed for t = 10 min = approx. one cloud cycle

> To determine the relative importance of the loss rates by bacterial and chemical processes, we define:

Comparison of fr_{bact} , fr_{chemaq} , $fr_{chemgas}$ shows which of the three loss rates is the highest, but it gives NO information on the absolute importance of these processes to the **total loss of the organic compound**

> To determine the importance of bacteria as absolute sink of the organic compound, we calculate:

Model results: Biodegradation of volatiles organics

Selected example: $R_{bact}=10^{-6} \text{ s}^{-1}$ and $R_{chemgas}=10^{-6} \text{ s}^{-1}$ (constant)

a) fr_{bact} as a function of K_H and R_{chemaq}

b) $fr_{org,bact}$ as a function of K_H and R_{chemaq}

highest $fr_{org,bact}$: $K_H \sim 10^5$, (almost) independent of R_{chemaq}

The location of the maxima is different for different combinations of R_{bact} and R_{chemgas}, but the overall conclusions and shapes are identical for wide parameter ranges

- \rightarrow The maxima of fr_{bact} (left panel) and fr_{org,bact} (right panel) do not coincide!
- \rightarrow (As expected) highest $\mathrm{fr}_{\mathrm{bact}}$ when chemical reactivity is lowest and solubility highest
- \rightarrow Bacteria represent the most efficient sink for organics with intermediate solubility (K_H ~ 10⁻⁵ M atm⁻¹) ₅

Model results: Biodegradation of non-volatile organics

 \rightarrow fr_{bact} and fr_{bact,org} show the same trends for non-volatile organics

 \rightarrow fr_{bact} and fr_{org,bact} are highest for the highest fr_{bact}, i.e. when chemical loss in the aqueous phase is negligible (low R_{chem.aq})

Model results: Volatile vs non-volatile organics

Model results: Comparison to experimental data

		K _H / M atm ⁻¹	k _{chemaq} / M ⁻¹ s ⁻¹	k _{bact} / L cell ⁻¹ s ⁻¹	C _{cell} / cell L ⁻¹
1	Acetic acid	$1.2 \cdot 10^4$	2,2x10 ⁸	1,5x10 ⁻¹⁸	6,6x10 ¹¹
2	Formic acid	9.10^{3}	108	4,8x10 ⁻¹⁸	2x10 ¹¹
3	Form- aldehyde	1.3.104	10 ⁹	5x10 ⁻¹⁸	2x10 ¹¹
4	Methanol	$2 \cdot 10^{2}$	4x10 ⁷	5x10 ⁻²⁰	2x10 ¹³
5	Catechol	8.3·10 ⁵	3,8x10 ⁸	4,16x10 ⁻¹⁵	2,4x10 ⁸

Example: Constant values for $R_{bact} = 10^{-6} \text{ s}^{-1} = k_{bact} [\text{L cell}^{-1} \text{ s}^{-1}] C_{cell} [\text{cell } \text{L}^{-1}]$ $R_{chemgas} = 10^{-6} \text{ s}^{-1} = k_{chemgas} \cdot [\text{Radical}]_{gas} \xrightarrow{\text{e.g.}} 0\text{H(gas)}$ $\sim 10^{-12} \text{ cm}^3 \text{ s}^{-1} \cdot 10^6 \text{ cm}^{-3} \xrightarrow{\text{e.g.}} 0\text{H(gas)}$ $\text{fr}_{orgbact} \text{ as a function of}$ $K_{H} [\text{M atm}^{-1}] \text{ and}$ $R_{chemaq} = k_{chemaq} [\text{M}^{-1} \text{ s}^{-1}] \cdot 10^{-15} \text{ M} \xrightarrow{\text{e.g. OH(aq)}} 0$

- These $fr_{orgbact}$ are reached in clouds for the calculated bacteria concentrations C_{cell}
- Given that typical cell concentrations in cloud water are in the range of $\sim 10^6 - 10^8$ cell L⁻¹, our results show that the loss by biodegradation for some of the organics is likely smaller than predicted in the figure

 $C_{cell} = R_{bact} / k_{bact}$
for $R_{bact} = 10^{-6} \text{ s}^{-1}$

Note that Ccell depends somewhat on the choice of $R_{bact} = const$ and $R_{chemgas} = const$.

However, the sensitivity of these rates to the overall conclusions is low.

Conclusion and Outlook

- For volatile organic compounds, the most efficient consumption by bacteria occurs for organics with intermediate solubility (~ 10^4 M atm⁻¹ < K_H < ~ 10^6 M atm⁻¹)
- Comparing only the loss rates of chemical vs bacteria processes does not give information on the importance of the total loss of the organic compound
- For non-volatile organic compounds, the sink of organics depends only on the competition of its chemical degradation by radicals and biodegradation in the aqueous phase
- Our sensitivity studies allow to estimate the potential importance of biodegradation of organics, for which chemical rate constants (k_{chemaq}, k_{chemgas}) and Henry's law constants are known
- Data on biodegradation rates for volatile and non-volatile compounds are sparse
- Further studies will include model simplifications to allow the implementation of biodegradation in multiphase chemistry cloud models

References:

- Amato, P., Demeer, F., Melaouhi, A., Fontanella, S., Martin-Biesse, A. S., Sancelme, M., Laj, P., & Delort, A. M., Atmos. Chem. Phys. (2007).
- Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., & Delort, A. M. FEMS Microbiol. Ecol. (2007).
- Delort, A. M., Vaïtilingom, M., Amato P., Sancelme, M., Parazols, M., Mailhot, G., Laj, P., & Deguillaume, L. Atmos. Res. (2010).
- Husárová, S., Vaïtilingom, M., Deguillaume, L., Traikia, M., Vinatier, V., Sancelme, M., Amato, P., Matulová, M., & Delort, A. M., Atmos. Res. (2011).
- Vaïtilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M., & Delort, A. M. Appl. Environ. Microbiol. (2010).
- Vaïtilingom, M., Charbouillot, T., Deguillaume, L., Maisonobe, R., Parazols, M., Amato, P., Sancelme, M., & Delort, A. M., Atmos. Chem. Phys. (2011).
- Vaïtilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato, P., Chaumerliac, N., & Delort, A. M., Proc. Nat. Sci. (2013).
- Fankhauser, A. M., Antonio, D. D., Krell, A., Alston, S. J., Banta, S., & McNeill, V. F. (2019).
- Ervens, B., & Amato, P., Atmos. Chem. Phys. (2020).
- Khaled, A., Zhang, M., Amato, P., Delort, A.-M., Ervens, B., in preparation