Evaluation of a new snow albedo scheme for the Greenland ice sheet in the regional climate model RACMO2

<u>Christiaan van Dalum</u>¹, Willem Jan van de Berg¹, Stef Lhermitte² and Michiel van den Broeke¹ ¹Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands ²Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, The Netherlands

The work in this display is based on a manuscript that is submitted to The Cryosphere under the same name

RACMO2.3p3: A new version of the regional climate model RACMO2

For what has RACMO2 been used?

- Surface processes of major ice sheets and ice caps. In this study: Greenland
- Present-day climate, future climate projections and much more...

What is new?	What modules do we use?	
Spectral snow albedo	Two-streAm Radiative TransfEr in Snow model	
 Radiation penetration 	(TARTES, Libois et al., 2013)	
 Subsurface heating and internal melt 	 Coupled with: Spectral-to-NarrOWBand ALbedo (SNOWBAL) module (Van Dalum et al., 2019) 	
 Updated bare ice scheme 		

Updated firn model

Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light penetration in snow, Cryosphere, 7, 1803–1818, https://doi.org/10.5194/tc-7-1803-2013, 2013.

Van Dalum, C. T., Van de Berg, W. J., Libois, Q., Picard, G., and Van den Broeke, M. R.: A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2, Geoscientific Model Development, 12, 5157–5175, https://doi.org/10.5194/gmd-12-5157-2019, 2019.

Question: How well does the new albedo scheme perform and what impact does it have on the Greenland ice sheet?

Evaluation with:

- MODIS MCD43A3 remote-sensing albedo product: broadband and its seven bands.
- K-transect and PROMICE automatic weather station data
- K-transect and PROMICE stake measurements
- Subsurface temperature observations

RACMO2 settings:

- Resolution: 11 km
- 2006-2015, with spin up from September 2000-2005
- Lateral boundaries: ERA-Interim

Average clear-sky albedo difference: RACM02.3p3 - MODIS

- In general: small albedo difference with MODIS, especially after bias correction
- Interior: mean corrected bias is 0.000
- South-eastern margin:
 - Inadequate resolution in RACMO2
 - Large uncertainty in the MODIS product

RACM02.3p3 albedo

Every point represents data for a grid point on 15:00 UTC for a day between 2006 and 2015

We compare RACM02.3p3 albedo with MODIS white-sky albedo (WSA) and the previous RACM02 version: 2.3p2

The following can be observed:

- 1. In general: close to the 1-1 line
- 2. Slightly stronger snow metamorphism in RACM02.3p3
- 3. Radiation penetration: subsurface darker ice or firn alter the albedo
- 4. A slower firn-ice transition
- 5. Bare ice is often modeled similarly
- 6. Edge errors in RACM02.3p2 and clouds
- ▶ 7. Newly modeled snow

(†)

8. Radiation penetration: subsurface bare ice alters the albedo

Surface mass balance (SMB)

- In the interior, almost no SMB change
- ► Tundra albedo contamination at the margins in RACM02.3p2 → Higher SMB
- SMB compares well with observations

(†)

Subsurface temperature

- Temperature profile for Summit (in the accumulation area, red) and S6 of the K-transect (in the ablation area, blue) for 10 July 2007, 15:00 UTC.
- RACM02.3p2 (Rp2), RACM02.3p3 (Rp3) and RACM02.3p3 without internal energy (wie) absorption are considered
- Each step is a modeled snow layer, upper 20 layers are shown

For Summit:

- Internal energy absorption leads to a better temperature profile
- Higher vertical resolution in RACMO2.3p3

For S6

Melt extent is increased in RACM02.3p3

- RACM02.3p3 snow and ice albedo compare well with observations
- Differences between the albedo of RACMO2.3p3 and the previous version can be explained by physical processes
- SMB correlates well with observations
- SMB differences with the previous RACMO2 version are generally small, except for some regions around the margin
- Subsurface energy absorption improves the internal snow temperature profile and extends melt to deeper layers.

