REMOTE BENTHIC HABITAT MAPPING USING SUNGLINT CORRECTED MULTISPECTRAL IMAGERY IN BAHRAIN WATERS

Authors:
Manaf Alkhuzaei, Matthew Brolly, Niall Burnside, Chris Carey, and Georgios Maniatis
University of Brighton, School of Environment and Technology
This study will assess the use of freely available multispectral remote sensing data to perform benthic habitat mapping in Bahrain waters. As part of this assessment, the use of specific spectral band combinations and spatial resolutions will be examined alongside the use of two different sunglint correction algorithms to ascertain ideal classification parameters for high accuracy unsupervised marine mapping with a particular focus upon seagrass.
The Kingdom of Bahrain is an archipelago comprising ~40 islands located in the southern region of the Arabian Gulf between longitudes 50°16’ and 51°00’ easting and latitudes 25°33’ and 27°12’ northing.

The average water depth in the gulf does not exceed 35m, while the sea surface temperature averages ~20°C annually and ranges between ~16°C in the winter and ~35 °C in the summer. Water turbidity is naturally high due to wave action and the shallow nature of the coastal waters (Alkuzai et al., 2009; Vousden, 1995).
Methodology

- Pre-processing Satellite Imagery
 i. Radiometric correction
 ii. Sunglint correction: Lyznga and Hedley
 iii. Water column correction
- Classification: Un-supervised classification (K-Mean)
- Accuracy assessment
Radiometric correction

Radiometric correction of Landsat and Sentinel 2 data involves the processing of a digital image to reduce the influence of errors or inconsistencies (usually referred to as “noise”) in image brightness values that may limit one’s ability to interpret or quantitatively process and analyse digital remotely sensed images (Hadjimitsis et al., 2010).

The TOA spectral radiance is calculated through the band-specific multiplicative rescaling factor (M_L), the calibrated standard product pixel values (Q_{cal}), and the band-specific additive rescaling factor (A_L) as illustrated in the equation:

$$L_{\lambda} = M_L * Q_{cal} + A_L$$

Where L_{λ} is the spectral radiance at the sensor’s aperture in W/(m2.sr$^{-1}$. μm$^{-1}$), $M_L = \frac{L_{\lambda,\text{MAX}} - L_{\lambda,\text{MIN}}}{Q_{cal,\text{MAX}}}$, $A_L = L_{\lambda,\text{MIN}}$, Q_{cal} is the quantized calibrated pixel value in DNs, $L_{\lambda,\text{MIN}}$ is the spectral radiance that is scaled to Q_{cal} min in W/(m2.sr$^{-1}$. μm$^{-1}$), $L_{\lambda,\text{MAX}}$ is the spectral radiance that is scaled to Q_{cal} max in W/(m2.sr$^{-1}$. μm$^{-1}$), $Q_{cal,\text{min}}$ is the minimum quantized calibrated pixel value (DN) corresponding to $L_{\lambda,\text{MIN}}$, and $Q_{cal,\text{max}}$ is the maximum quantized calibrated pixel value (DN) corresponding to $L_{\lambda,\text{MAX}}$.
Sunglint correction

The sunglint correction method of (Hedley et al., 2005) and (Lyzenga et al., 2006) were applied to both data sets in the same location using these equations:

Hedley: \(L_i' = L_i - r(L_{NIR} - \text{NIR}_{\text{Min}}) \)

Lyzenga: \(L_i' = L_i - r(L_{NIR} - \text{NIR}_{\text{Mean}}) \)

where \(L_i' \) represents the deglinted radiance value, \(L_i \) is the radiance value of the visible bands, \(r \) is the slope calculated from the regression model, \(L_{NIR} \) is the near-infrared band value, and \(\text{NIR}_{\text{Min}} \) and \(\text{NIR}_{\text{Mean}} \) are the minimum and mean value for the near-infrared band from the region of interest respectively.
Water column correction

Kanno et al., 2013 modified the approach of (Lyzenga, 1981) to correct the water column depth in shallow water reflectance. This method uses the upwelling (L) and the downwelling radiance (E) of the water surface to calculate the water depth (h) from the bottom reflectance value (Rb), by using an attenuation coefficient (k), as it is represented in the equations:

\[R = R_\infty + (Rb - R_\infty) \times e^{-kh} \]
\[R \equiv \pi \times \frac{L}{E} \]
\[\log[R - R_\infty] = \log[Rb - R_\infty] - k \times h \]

Where the \(\log [R - R_\infty] \) can be derived by using the average R of the deep-water pixels as a substitute for \(R_\infty \) and \(\log [Rb - R_\infty] \) depends on \(Rb \) but not on \(h \) (Kanno et al., 2013).
Images (RGB) of sunglint removal for and Landsat 8 (a) Sentinel-2 (b). Radiometrically corrected images (i), and sunglint corrected images from the methods of (Hedley et al., 2005) (ii), (Lyzenga et al., 2006) (iii).
Landsat 8 spectral profiles in radiance (mW cm-2 sr-1 μm-1) from a transect taken where sunglint was present.
Sentinel-2 spectral profiles in radiance (mW cm\(^{-2}\) sr\(^{-1}\) \(\mu\)m\(^{-1}\)) from a transect taken where sunglint was present.
Benthic habitat classification maps of Bahrain marine area (A) represents the results generated from Landsat 8 and (B) are the results of Sentinel-2. (1) is for three band (Red, Green and Blue) Hedley, (2) three band Lyzenga, (3) four band (Red, Green, Blue and Coastal) Hedley and (4) is four band Lyzenga.
Accuracy assessment results for classification images.

<table>
<thead>
<tr>
<th></th>
<th>Landsat 8</th>
<th>Sentinel-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall Accuracy (%)</td>
<td>Kappa Coefficient</td>
</tr>
<tr>
<td>4 Bands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncorrected</td>
<td>54</td>
<td>0.4656</td>
</tr>
<tr>
<td>Hedley</td>
<td>74</td>
<td>0.6933</td>
</tr>
<tr>
<td>Lyzenga</td>
<td>74</td>
<td>0.6933</td>
</tr>
<tr>
<td>3 Bands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncorrected</td>
<td>64</td>
<td>0.5757</td>
</tr>
<tr>
<td>Hedley</td>
<td>72</td>
<td>0.6714</td>
</tr>
<tr>
<td>Lyzenga</td>
<td>72</td>
<td>0.6714</td>
</tr>
</tbody>
</table>
Conclusions

The results of this study indicate that 25-30% of the Bahrain study area is occupied by vital seagrass and algae. These habitats are essential for endangered species such as dugong (sea cow) and green turtles which are currently protected by the Union for the Conservation of Nature (IUCN) and the World Wildlife Fund (WWF) (Alkuzai et al., 2009; Supreme Council for Environment, 2016). Also, it highlights the improvements offered by using sensors with finer spatial resolutions across all spectral band offerings; it also shows the benefits of using higher spectral resolutions in conjunction with this. Achieving improvements in these areas in conjunction with the application of processing methods such as sunglint correction will allow more accurate representations of benthic habitats.
References

