

Uvalas and their relationship to sinkholes in an evaporite karst setting, Dead Sea eastern shore, Jordan

R. A. Watson ⁽¹⁾, E. P. Holohan ⁽¹⁾, D. Al-Halbouni ⁽²⁾, H. Alrshdan ⁽³⁾, D. Closson ⁽⁴⁾, & T. Dahm ⁽²⁾

- (1) UCD School of Earth Sciences, Ireland
- (2) GFZ-Potsdam, Germany
- (3) Ministry of Energy and Mineral Resources, Jordan
- (4) SkyMap Global Ltd, Singapore

What is an uvala?

Enclosed karst depressions:

- > Doline (sinkhole)
- > Uvala

Increasing size

> Polje

Depth/Diameter ratios:

> Doline: ~ 0.1

> Uvala: ~ 0.01

Proposed formation mechanisms for uvalas:

- > Surface dissolution
- Coalescence of sinkholes
- > Subsidence

Dead Sea evaporite karst:

- → Also hosts depressions on multiple scales
- → Form in 10 years, not 10000 years!

Fundamental Research Questions

- 1) How do sinkholes and uvalas interrelate in space and time?
- 2) What is the mechanism of uvala formation?
- 3) How do these karst landforms relate to subsurface hydrology?

The Dead Sea: a natural laboratory for sinkhole studies...

The Dead Sea: a natural laboratory for sinkhole studies...

The Dead Sea is a terminal lake: needs inflow to sustain sea level!

Diversion of inflow from River Jordan to irrigate farmland

Ghor Al-Haditha: site overview

Optical Satellites

Aerial Surveys

50 Years of Remote Sensing Datasets

	Data Source	Aquisition Year(s)	Resolution (m/pix)
	Corona	1967, 1968, 1970	2.0
	Quickbird	2002, 2004-2007, 2012	0.6
	Ikonos	2006	8.0
	Worldview 1	2008, 2011, 2012	0.5
	GeoEye-1	2009-2010	0.5
	Worldview 3	2014	0.3
8	Pleiades 1a	2013, 2015 - 2017	0.5
	RJGC Aerial	1981, 1992, 2000	0.6
8	Drone and Helikite surveys	2014 - 2016	0.1

- Dataset includes: optical satellite imagery, aerial survey photographs, drone and balloon based photogrammetric surveys
- Spatial resolution: 0.1 2 m per pixel
- Temporal resolution: decadal from 1970 2010; annual from 2004 2017
- Also have 3D Digital Surface Models derived from photogrammetry

Base image: Pleiades, 2017

Some sinkholes in the southern part of the study area

No uvalas

Base image: Pleiades, 2017

Base image: Pleiades, 2017

Two new uvalas

U3 **U4** U5 400 800

31.35

Initiation of sinkhole and uvala formation

Sinkhole and uvala development in U1 area ceases

Base image: Pleiades, 2017

Migration of uvala extents

Migration of existing sinkhole clusters

Base image: Pleiades, 2017

Sinkhole and uvala development in U2 area ceases

31.35

Sinkholes and uvalas develop together in space and time!

- Sinkholes precede uvalas by 28 years
- Uvala and sinkhole initiation migrates SW - NE
- After initiated, sinkhole and uvala growth migrates seaward
- Uvalas and sinkholes cease development synchronously.

Mud Factory 400 800 m

NEXT:

- 1. Uvala formation mechanism?
- 2. Link to subsurface hydrology?

Let's zoom in...

Mechanism of uvala formation

U2: 'Factory'

Proposed mechanisms:

- > Surface dissolution
- > Coalescence of sinkholes
- > Subsidence

Mechanism of uvala formation

U2: 'Factory'

____ 2010

2014

-428

2014

Mechanism of uvala formation

-428

2014

Aerial Photograph, 2000

Landform Sketch Map

Satellite Image, 2006

Landform Sketch Map

Satellite Image, 2012

Landform Sketch Map

Convergence of subsidence on major spring: subsurface erosion by groundwater causes collapse!

Bringing it all together...

How does this relate to limestone karst?

A question of scale?

Dead Sea: Conclusions

- 1. Spatio-temporal relationship of uvalas and sinkholes?
- → initiate, develop and cease in tandem. Evolve as morphologically distinct features, however.
- 2. Mechanism of uvala formation?
- ✓ **Subsidence x** Surface dissolution **x** Coalescence of sinkholes
- 3. Relationship to subsurface hydrology?
- → Sinkholes: discrete point collapses (individual conduits)
- → Uvalas: distributed subsidence and surface sagging (conduit network)

Thank you - and check out the paper!

Solid Earth

An interactive open-access journal of the European Geosciences Union

EGU.eu | EGU Publications | EGU Highlight Articles | Contact | Imprint | Data protection |

Solid Earth, 10, 1451–1468, 2019 https://doi.org/10.5194/se-10-1451-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Research article

Article

Peer review

Metrics

Related articles

SE | Volume 10, issue 4

30 Aug 2019

Author

Search

Search articles

Special issue

Environmental changes and hazards in the Dead Sea region

Copernicus Publications

The Innovative Open Access Publisher

(NHESS/ACP/HESS/SE...

Download

▼ Q

Supplement (419 KB)

Short summary

The fall of the Dead Sea level since the 1960s has provoked the formation of over 6000...

Read more

Sinkholes and uvalas in evaporite karst: spatio-temporal development with links to base-level fall on the eastern shore of the Dead Sea

Robert A. Watson^{1,a}, Eoghan P. Holohan¹, Djamil Al-Halbouni¹, Leila Saberi³, Ali Sawarieh⁴, Damien Closson⁵, Hussam Alrshdan⁴, Najib Abou Karaki^{6,b}, Christian Siebert¹, Thomas R. Walter¹, and Torsten Dahm¹

- ¹UCD School of Earth Sciences, University College Dublin, Dublin, Ireland
- ²Helmholtz Centre Potsdam (GFZ), Section 2.1, Potsdam, Germany
- ³University of Minnesota, Department of Earth Sciences, Minneapolis, USA
- ⁴Ministry of Energy and Mineral Resources, Amman, Jordan
- ⁵Geographic Information Management, Leuven, Belgium
- ⁶Department of Environmental and Applied Geology, University of Jordan, Amman, 11942, Jordan
- ⁷Helmholtz Centre for Environmental Research UFZ, T. Lieser Str. 4, 06120 Halle, Germany
- anow at: Department of Earth Sciences, University of Graz, 8010 Graz, Austria
- bvisiting scientist at: Environmental Engineering Department, Al-Hussein bin Talal University, Ma'an, Jordan

Correspondence: Robert A. Watson (robert.watson@uni-graz.at) and Eoghan P. Holohan (eoghan.holohan@ucd.ie)

