Towards non-linear inverse problem for atmospheric source term determination

Ondřej Tichý, Václav Šmídl

The Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, Czech Republic

May 4, 2020
Problem formulation

we assume linear model of atmospheric dispersion using a source-receptor sensitivity (SRS) matrix \(M \) as

\[
y = Mx + e, \tag{1}
\]

\(y \in \mathbb{R}^p \) is a vector aggregating measurements
\(M \in \mathbb{R}^{p \times n} \) is the SRS matrix
\(x \in \mathbb{R}^n \) is a vector of the unknown release to be estimated
\(e \in \mathbb{R}^p \) is error model
Atmospheric model error

- SRS matrix M is traditionally assumed to be correct, which may be misleading.
- Here, we consider (in general) bi-linear model of the source term estimation problem in the form

\[y = (M + \Delta_M)x + e, \]

where Δ_M is the deviation of M from the “correct” SRS fields.
- The deviation Δ_M can express, e.g., temporal shift and/or spatial shift.
Bi-linear formulation

- bi-linear formulation of the problem

\[
y = \left(\begin{array}{c}
M + \text{diag}(h_t) (M_{t-shift+} - M_{t-shift-}) \\
H_t & S_t
\end{array} \right) x + e, \tag{3}
\]

- \(h_t \in [-1; +1] \) are (unknown) coefficients
- \(M_{t-shift+} \) and \(M_{t-shift-} \) are shifted SRS matrices
Variational Bayes solution (in short)

- prior $p(y)$ is modeled as Gaussian with estimated scalar precession
- $p(H_t)$ is modeled according to the sparse Bayesian learning [Tipping, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of machine learning research, 1, 211-244, 2001.]
Synthetic example

- **Release rate (kg/h)**: The diagram shows release rates over time. The blue line represents bilinear estimation, the green line denotes linear estimation, and the red dashed line indicates the true simulated release.

- **Time (h)**: The x-axis represents time in hours, ranging from 0 to 10.

- **Measurement no.**: The y-axis on the right represents the number of measurements, ranging from -1 to 200.

- **Estimated shift (H values)**: The rightmost diagram displays estimated shifts against measurement numbers, comparing estimation (blue) and simulation (red dashed) results.
ETEX example
Preliminary conclusions

- it is possible to estimate parametric corruptions the SRS fields and correct them
- better measurements fit is observed (indeed, also overfitting in specific cases)

feel free to contact me at otichy@utia.cas.cz