Exploring the effects of biodiversity and elemental stoichiometry on terrestrial carbon balance?

Marcos Fernández-Martínez, J. Sardans, Josep Peñuelas, Ivan A. Janssens
Universiteit Antwerpen - PLECO

EGU 2020, Vienna, 08/04/2020
Known drivers of terrestrial C balance

- Climate, management, atmospheric deposition, land-use change…

![Diagram showing relationships between N Deposition, MAT, AET, GPP, Re, NEP, and their effects on each other.]

Total standardised effects

<table>
<thead>
<tr>
<th></th>
<th>N dep</th>
<th>AET</th>
<th>MAT</th>
<th>GPP</th>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPP</td>
<td></td>
<td>0.60 ± 0.09</td>
<td>0.29 ± 0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>-0.14 ± 0.05</td>
<td>0.55 ± 0.08</td>
<td>0.27 ± 0.08</td>
<td>0.93 ± 0.03</td>
<td></td>
</tr>
<tr>
<td>NEP</td>
<td>0.37 ± 0.14</td>
<td>0.16 ± 0.31</td>
<td>0.01 ± 0.30</td>
<td>0.26 ± 0.11</td>
<td>-2.55 ± 0.05</td>
</tr>
</tbody>
</table>

Modified from Fernández-Martínez et al., 2014 – Trees
Known drivers of terrestrial C balance

- *Nutrient availability* ~ altered atmospheric deposition and CO$_2$

Graph not shown due to copyright,
See de Vries et al., 2014 – *Nature Climate Change*
The role of biodiversity on ecosystem functioning

- **Biodiversity increases** productivity and stability in terrestrial and aquatic ecosystems (biomass production, decomposition)

- Shown to be **as important as other drivers of global change** (nutrients, drought)

- But it’s role on C balance is unknown!
Altered biogeochemical cycles and biodiversity

- Altered biogeochemical cycles and climate
 change C:N:P stoichiometry and reduce biodiversity

Graph not shown due to copyright,
see Steffen et al., 2015 - Science
Objectives:

Effects of foliar N and P and biodiversity on C balance

• Local scale:

 ~ 62 Fluxnet sites (GPP, Re and NEP) including:
 Forests (41), savannas, shrublands and grasslands (21)
 C flux means and their interannual variability (1/stability)
 Climate means, climate variability
 Site species abundance (species and phylogenetic diversity)
 Foliar N & P concentration (community weighted means)
Climate, nutrients and biotic factors drive C fluxes (all sites)

a) Annual sums and Interannual variability

Variance explained (R^2, %)

GPP

Re

NEP

b) Annual sums and Interannual variability

Species diversity weakly increases Re
Phylogenetic diversity stabilises NEP in non-forest ecosystems

a)

<table>
<thead>
<tr>
<th></th>
<th>Annual sums</th>
<th>Interannual variability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Climate</td>
<td>Endogenous</td>
</tr>
<tr>
<td>GPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variance explained (R^2, %)

b)

<table>
<thead>
<tr>
<th></th>
<th>Annual sums</th>
<th>Interannual variability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GPP</td>
<td>Re</td>
</tr>
<tr>
<td>GPP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP_{iav}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT_{iav}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity_{phylo}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Foliar stoichiometry affects C fluxes
The magnitude of the flux controls its temporal variability

(a) GPP

$\beta = -0.68 \pm 0.09$
$P = 0.001$
$R^2 = 48.2\%$

(b) Re

$\beta = -0.40 \pm 0.13$
$P = 0.004$
$R^2 = 15.2\%$

(c) NEP

$\beta = -0.50 \pm 0.09$
$P < 0.001$
$R^2 = 27.5\%$

(d) Leaf N (% DW)

$\beta = 0.24 \pm 0.09$
$P = 0.009$
$R^2 = 8.3\%$

(e) MAP (mm y$^{-1}$)

MAT × MAP:

$\beta = -0.67 \pm 0.27$
$P = 0.018$
$R^2 = 23.1\%$

(f) MAT (°C)

$\beta = 0.22 \pm 0.09$
$P = 0.022$
$R^2 = 6.5\%$
Take-home messages

• Larger C fluxes tend to be more stable over time

• **Foliar N:P stoichiometry** affects GPP, Re and NEP. Changes are expected if stoichiometry and/or species change

• Better **biodiversity assessments are needed** to understand the role of biodiversity on C balance
Thanks for your attention!