Shape and distribution anisotropy of irregular arrangements of diverse bodies a 3D computational model

Andrea R. Biedermann, Institute of Geological Sciences, University of Bern, Switzerland

Motivation

Magnetic anisotropy related to strongly magnetic bodies:

- Shape anisotropy due to self-demagnetization
- Distribution anisotropy due to magnetostatic interactions

Information on the rock's (de)formation history, mineral alignment and flow paths

- Magnetite grains in rocks
- Pore space impregnated with ferrofluid (magnetic pore fabric)

Existing models

- equal particle size and shape
- equal orientation
- regular spacing
- lines or planes
- infinite
- nearest-neighbour interactions

Reality

Need models for irregular arrangements of a finite number of particles with diverse sizes, shapes and orientations

Theory

Shape anisotropy

- Particle shape
- Magnetization

Distribution anisotropy

- Inter-particle spacing
- Particle arrangement wrt secondary field
- Magnetic properties

Self-demagnetization External field Total magnetization

Relative importance defined by

- Particle shapes and orientation - Inter-particle spacing
- Particle arrangement
- Magnetic properties

Model

Assumptions:

- Ellipsoidal or cylindrical particles
- Known and homogeneous intrinsic susceptibility
- Non-magnetic matrix

Input parameters:

- Coordinates for each particle center
- Particle dimensions (major, intermediate and minor axes)
- Orientation vectors of the principal axes, defined by 2 angles

These parameters are read in from a table format, and can be derived e.g. from

- Known parameters of man-made samples
- X-ray computed tomography data
- Imaging in the optical or electron microscope, subject to some assumptions due to lack of information in third dimension

Examples

Synthetic samples, cylindrical cavities filled with ferrofluid

Known

- Cavity dimension
- Number of cavities
- Bedding-type fabric
- Ferrofluid susceptibility

Not known

- Spacing

Previous work

- Measurements Jones et al., 2006
- Infinite model Biedermann, 2019

New finite model matches the data better than the infinite model, and predicts 4.5 mm distance between cavity centers

Magnetite particles in oxide gabbro

- Backscattered electron

image -> particles in 2D

Previous work

Known:

Measurements projected to image plane - Measurements

- Susceptibility

Biedermann et al., 2020

Model reflects observed differences between fabrics of large vs small grains

Biedermann, A.R., 2019. Magnetic pore fabrics: the role of shape and distribution anisotropy in defining the magnetic anisotropy of ferrofluid-impregnated samples, Geochemistry, Geophysics, Geosystems; Biedermann, A.R., Jackson, M., Bilardello, D. & Feinberg, J.M., 2020. Anisotropy of full and partial anhysteretic remanence across different rock types: 2. Coercivity-dependence of remanence anisotropy, Tectonics; Jones, S., Benson, P. & Meredith, P., 2006. Pore fabric anisotropy: testing the equivalent pore concept using magnetic measurements on synthetic voids of known geometry, Geophysical Journal International.

Conclusions

Can predict shape and distribution anisotropy in realistic particle assemblages

Advanced understanding of interplay between shape and distribution anisotropy in natural samples

More robust and reliable interpretations