
Chemical speciation in GPU for the
parallel resolution of reactive

transport problems
i Why Chemical Specialization on GPU?

• Reactive Transport modeling (RTM) can be very computationally expensive and therefor several efforts have

been made in the last decade in order to parallelize it.

Pablo Gamazo1, Lucas Bessone1, Julián Ramos1, Elena Alvareda1 and Pablo Ezzatti2

(1)Universidad de la República, Departamento del Agua (Water Department), Salto, Uruguay
(2)Universidad de la República, Facultad de Ingeniería, Montevideo, Uruguay

iii Solving Chemical Specialization

• In this work, we show the performance of a speciation code implemented in CUDA and we compare running

times with an OpenMP code that uses IPhreeqc.

• Despite the recent advances on GPU, only a few works explore this architecture for RTM, and they mainly focused on the implementation of

parallel sparse matrix solvers for the component transport.

• Solving the component transport consumes an important amount of time during simulation, but another time-consuming part

of RTM is the chemical speciation, a process that has to be performed multiple times during the resolution of each time ‘

step over all nodes (or discrete elements of the mesh).

• Since speciation involves local calculations, it is a priory a very attractive process to parallelize. But, to the

author’s knowledge, no work on literature explores chemical speciation parallelization on GPU.

• One of the reasons behind this might be the fact that

the unknowns and the number of chemical equations

that act over each node might be different and can

dynamically change in time, due to mineral precipitation

or dissolution. This can be a drawback for the single

instruction multiple data paradigm since it might lead to

the resolution of several systems with potentially

different sizes all over the domain. This may cause

thread divergence, which penalizes the performance of

the GPU code.

• Chemical speciation implies solving the distribution of all elements among defined chemical species in a system.

• A component is one collection of chemically independent constituents of a system. The number of components

represents the minimum number of independent species necessary to define the composition of all phases of the

system (plus pressure and temperature).

• One of the most common ways to perform speciation is from the concentration of primary species (which are equal in

number to the number of system components). From the concentrations of the primary species, a system of equations is

solved that involves the calculation of the activities of all spices and meet all laws of mass action.

• Let’s consider a system with 3 species and one equilibrium reaction:

Unknowns

species concentration: 𝐴 , 𝐵 𝑎𝑛𝑑 𝐶

species activities: 𝐴 , 𝐵 𝑎𝑛𝑑 𝐶

Equations

Activity model: 𝐴 = 𝑓𝐴 𝐴 , 𝐵 , 𝐶

𝐵 = 𝑓𝐵 𝐴 , 𝐵 , 𝐶

𝐶 = 𝑓𝐶 𝐴 , 𝐵 , 𝐶

Law of mass action:
𝐶 𝑐

𝐴 𝑎 𝐵 𝑏 = 𝐾

Reaction: 𝑎𝐴 + 𝑏𝐵 ↔ 𝑐𝐶

Species: 𝐴, 𝐵 𝑎𝑛𝑑 𝐶

• The system has 6 unknowns

and 4 equations.

• But if the reaction involves a

mineral, it has to be omitted

when the mineral is

undersaturated.

• If the mineral activity is

considered as constant (as in

most cases when solving

groundwater problems), the

number of primary species is

reduced by 1.

If not treated properly thread divergence can be the

Achilles' heels of any CUDA code

iv Implementation

• We used the solver “dsolve_batch(A, b, x, n, batch)” available at NVIDIA DEVELOPER site: https://developer.nvidia.com

(A=matrices; b=right-hand sides; n=systems dimension, batch=number of batches).

• This subroutine solves many double-precision systems of linear equations, each with a single right-hand side. Partial pivoting is

‘ employed by the solver algorithm for increased numerical stability.

• Each batch system is processed by a single thread, for the calculation of activities coefficients and its

‘ derivatives, saturations indexes and the contributions to the matrix A and the vector b.

• The code has 3 main subroutines:

1. Batch_Activity: calculates aqueous species activity coefficients (and its derivatives) for a given composition.

2. Speciation_From_Primary: calculates secondary species concentration from primary species concentration

‘ while meeting all active mass action laws.
3. Speciation_From_Components: calculates all species concentration form the components values.

v application

1st we solve the following

chemical system considering

the B-dot activity model:

𝐻𝐶𝑂3
− + 𝐶𝑎2+ ↔ 𝐶𝑎𝐶𝑂3(𝑎𝑞) +𝐻+

𝐻2𝑂 + 𝐶𝑎2+ ↔ 𝐶𝑎𝑂𝐻+ +𝐻+

𝐻𝐶𝑂3
− ↔ 𝐶𝑂3

2− +𝐻+

𝐻2𝑂 ↔ 𝑂𝐻− +𝐻+

𝐻𝐶𝑂3
− + 𝐶𝑎2+ ↔ 𝐶𝑎𝐻𝐶𝑂3

+

𝐻𝐶𝑂3
− +𝐻+ ↔ 𝐶𝑂2 +𝐻2𝑂

𝐻𝐶𝑂3
− + 𝐶𝑎2+ ↔ 𝐶𝑎𝐶𝑂3(𝑚) +𝐻+

2nd we create millions

of batch systems, half

undersaturated with

respect to calcite and

half saturated:

Without calcite

pH = 7

Ca = 1 mmol/kgw

C = 1 mmol/kgw

With calcite

Ca = 1 mmol/kgw

C = 1 mmol/kgw

3rd we change randomly 5%

of component concentration

and we run the speciation.

Preliminary comparison with IPhreeqc:

• For the studied system, the CUDA code runs speciation 18% faster than the CPU OpenMP code.

This might lead to

systems of equations

with a different size on

each batch system,

which may cause

thread divergence

• We develop a strategy to keep constant the size of the system to be solved during speciation that minimizes thread divergence.

ii Chemical Specialization with Single Instruction Multiple Data

EGU2020-131

EGU2020-1631

