EGU General Assembly

High-resolution combined global gravity field modelling: The d/o 5,400 XGM2020 model

Philipp Zingerle, Roland Pail, Thomas Gruber, Xanthi Oikonomidou Institute of Astronomical and Physical Geodesy, Technical University of Munich, Germany

APG Institute of Astronomical and Physical Geodesy Univ.-Prof. Dr.techn. Mag.rer.nat. Roland Pail

1.1 Outline

- **XGM2020** is the follow-on **global gravity field model** to XGM2019:
 - Basic combination strategy with satellite model is unchanged
 - NEW: ground dataset was recompiled over the whole spectrum
 - NEW: altimetric gravity anomalies are calculated inhouse (from DTU18 MSS)
 - PLANNED: maximum d/o of dense part will be extended to 2159

1.1 Outline

- **XGM2020** is the follow-on **global gravity field model** to XGM2019:
 - Basic combination strategy with satellite model is unchanged
 - NEW: ground dataset was recompiled over the whole spectrum
 - NEW: altimetric gravity anomalies are calculated inhouse (from DTU18 MSS)
 - PLANNED: maximum d/o of dense part will be extended to 2159
- □ Main improvements of the new model are to be expected over the open ocean

1.1 Outline

- **XGM2020** is the follow-on **global gravity field model** to XGM2019:
 - Basic combination strategy with satellite model is unchanged
 - NEW: ground dataset was recompiled over the whole spectrum
 - NEW: altimetric gravity anomalies are calculated inhouse (from DTU18 MSS)
 - PLANNED: maximum d/o of dense part will be extended to 2159
- □ Main improvements of the new model are to be expected over the open ocean
- Over land, the data situation is unchanged and is unlikely to improve until the publication of EGM2020

Different data sources for land and ocean:

		spatial region		
spectral band	1	land	ocean	
	d\o 0 d\o 719	NGA collocation Pail et al., 2018	OGMOC ¹ mean dynamic topography +	
	d\o 720 d\o 5400	EARTH 2014 topo. model Rexer et al., 2017	DTU18 MSS mean sea surface Andersen et al., 2018	

¹Knudsen et al. (2018). A New OGMOC Mean Dynamic Topography Model – DTU17MDT.

Different data sources for **land** and **ocean**:

		spatial region		
	1	land	ocean	
spectral band	d\o 0	NGA collocation Pail et al., 2018	OGMOC ¹ mean dynamic topography +	
	d\o 720	EARTH 2014 topo. model Rexer et al., 2017	DTU18 MSS mean sea surface Andersen et al., 2018	

Spatial tapering
30[km] linear transition from
coastline, towards the ocean

(coastlines from GSHHS, Wessel and Smith 1996, omitting islands smaller than 10[km²])

 Spectral tapering stick-together in the (pseudo) spheroidal-harmonic domain (using the geometry of the TOPEX ellipsoid)

¹Knudsen et al. (2018). A New OGMOC Mean Dynamic Topography Model – DTU17MDT.

IAPG

2.2 Ground data processing – Spatial tapering

Areas with strong sea ice coverage were cut out

IAPG

Zingerle | 5/2/2020 | XGM2020

шп

2.2 Ground data processing – Spatial tapering

IAPG

Zingerle | 5/2/2020 | XGM2020

2.2 Ground data processing – Spatial tapering (2)

Different data sources for land and ocean:

IAP

Zingerle | 5/2/2020 | XGM2020

2.2 Ground data processing – Spatial tapering (2)

Different data sources for land and ocean:

EGU General Assembly

2.3 Ground data processing – Altimetric gravity

- ПШ
- Altimetric gravity anomalies are derived by performing a rigorous spheroidal harmonic analysis (EHA) of the ocean's geoid: (first time ever!)
 - > the ocean's geoid N_{Ocean} (=height anomalies) is derived by: $N_{Ocean} = MSS_{DTU18} - MDT_{OGMOC}$
 - over land XGM2019-derived height anomalies are filled in

2.3 Ground data processing – Altimetric gravity

- ПШ
- Altimetric gravity anomalies are derived by performing a rigorous spheroidal harmonic analysis (EHA) of the ocean's geoid: (first time ever!)
 - > the ocean's geoid N_{Ocean} (=height anomalies) is derived by: $N_{Ocean} = MSS_{DTU18} - MDT_{OGMOC}$
 - over land XGM2019-derived height anomalies are filled in
 - analysis is implemented through a block-diagonal LSA approach
 - spectrum is estimated up to d/o 10,700 using the spheroidal harmonic identity to Bruns' approximation

2.3 Ground data processing – Altimetric gravity

- ПШ
- Altimetric gravity anomalies are derived by performing a rigorous spheroidal harmonic analysis (EHA) of the ocean's geoid: (first time ever!)
 - > the ocean's geoid N_{Ocean} (=height anomalies) is derived by: $N_{Ocean} = MSS_{DTU18} - MDT_{OGMOC}$
 - over land XGM2019-derived height anomalies are filled in
 - analysis is implemented through a block-diagonal LSA approach
 - spectrum is estimated up to d/o 10,700 using the spheroidal harmonic identity to Bruns' approximation
 - Aliasing is avoided through the newly developed SLASH (Spatial Low pass Analysis – Spectral High pass) filter strategy
 - due to very high noise within the MSS in the higher frequencies, the final spectrum is limited to d/o 5,480

2.3 Ground data processing – Altimetric gravity (2)

Ocean's geoid N_{Ocean} (MSS-MDT)

Ш

7

EGU General Assembly

2.3 Ground data processing – Altimetric gravity (2)

IAPG

Zingerle | 5/2/2020 | XGM2020

GU General Assembly

2.3 Ground data processing – Altimetric gravity (2)

IAPG

Zingerle | 5/2/2020 | XGM2020

2.3 Ground data processing – Altimetric gravity (3)

IAPG

Zingerle | 5/2/2020 | XGM2020

пΠ

2.3 Ground data processing – Altimetric gravity (4)

IAPG

2.3 Ground data processing – Altimetric gravity (5)

IAPG

2.3 Ground data processing – Altimetric gravity (6)

IAPG

Zingerle | 5/2/2020 | XGM2020

2.3 Ground data processing – Altimetric gravity (7)

IAPG

Zingerle | 5/2/2020 | XGM2020

2.4 Ground data processing – Final steps

- Having the altimetric gravity anomalies, the final ground dataset for the combination is obtained by:
 - replacing gravity anomalies over land with NGA data and topographic information, applying the same tapering as before
 - > (as anti-aliasing method the SLASH filter approach is used again)

2.4 Ground data processing – Final steps

- Having the altimetric gravity anomalies, the final ground dataset for the combination is obtained by:
 - replacing gravity anomalies over land with NGA data and topographic information, applying the same tapering as before
 - > (as **anti-aliasing** method the **SLASH filter** approach is used again)
 - analyzing the resulting grid in the EH domain, up to d/o 10,700, limiting it again to d/o 5,480 ground-only model
 - synthesis of the ground-only model up to d/o 719 [d/o 2159] on a 15' [5'] grid, forming the final ground dataset for the combination with the satellite model

3.1 XGM2020 calculation – Overview

3.1 XGM2020 calculation – Overview

NPUT

3.1 XGM2020 calculation – Overview

3.2 XGM2020 calculation – Degree errors

Zingerle | 5/2/2020 | XGM2020

3.2 XGM2020 calculation – Degree errors

Zingerle | 5/2/2020 | XGM2020

4.1 XGM2020 validation – MDT

Difference between input MDT and output MDT (MSS_{DTU18} - N_{XGM20}):

Kuroshio current

4.1 XGM2020 validation – MDT

Difference between input MDT and output MDT (MSS_{DTU18} - N_{XGM20}):

Kuroshio current

EGU General Assembly

4.2 XGM2020 validation – Geostrophic currents

Geostrophic currents derived from input MDT (OGMOC):

Kuroshio current

4.2 XGM2020 validation – Geostrophic currents (2)

Geostrophic currents derived from **output MDT** ($MSS_{DTU18} - N_{XGM20}$):

Kuroshio current

4.2 XGM2020 validation – Geostrophic currents (2)

Geostrophic currents derived from **output MDT** ($MSS_{DTU18} - N_{XGM20}$):

Gulf current

Kuroshio current

4.3 XGM2020 validation – Drifter velocities

Drifter cross-section comparisons:

(MDTs were spectrally limited to d/o 520 except the OGMOC and XGM2020 MDT, courtesy of Frank Siegismund)

Gulf current

Kuroshio current

ТШ

□ Pros:

- Altimetric data processing chain completely functional!
- Ability to fully reproduce input MDT and refine it within the satellite wavelengths
- LSA combination method has a high level of maturity

ТЛП

□ Pros:

- Altimetric data processing chain completely functional!
- Ability to fully reproduce input MDT and refine it within the satellite wavelengths
- LSA combination method has a high level of maturity
- □ Cons:
 - Land-Ocean tapering far from being perfect but: no other data available...
 - > Over **land**, **gravity** not further improvable waiting for new data (EGM2020?)
 - > OGMOC MDT not able to fully reproduce drifter speeds (better MDT needed?)

IAPG

