Soil contamination by pesticide residues

what and how much should we expect to find in EU agricultural soils based on pesticide representative uses?

Vera SILVA, Xiaomei YANG, Luuk FLESKENS, Coen RITSEMA, Violette GEISSEN

Soil Physics and Land Management Group, Wageningen University

Pesticides:

- heavily used in agriculture to reduce crop losses due to pests, weeds and pathogens
- World use: > 4 million tonnes, > 40 billion USD/year
- EU use: > 0.5 million tonnes > 2,000 products, 484 active substances (a.s.)

Malakof and Stokstad 2013

Contamination status of EU soils?

"It is difficult to quantify the real extent of local soil contamination as many European countries lack comprehensive inventories and there is a lack of EU legislation obliging Member States to identify contaminated sites"

Jones et al. 2012

© Authors. All rights reserved

Pesticide Representative uses - methodology

- 230 active substances (a.s.)
- -8 crops

cereals, maize, root crops, non-permanent industrial crops, permanent crops, grapes, dry pulses-vegetables-flowers, and temporary grassland

- 3 EU regions

NEU, CEU, SEU

- 3 pesticide use scenarios

NPUR, Hban, Pban

-Quality thresholds

0.25 and 0.75 max. number of a.s.0.25 and 0.75 max. total pesticide content

- * NEU=Northern EU, CEU=Central EU, SEU=Southern EU
- * NPUR=no pesticide use restrictions, HBan=herbicides banned, PBan=pesticides banned.
- * Pban represents recent stop of pesticides, and cover only very persistent a.s. (DT90>365 days)

- 230 active substances (a.s.) → ecological risks

Organism	Number of a.s.				
	Low	Moderate	High	No data found	
	toxicity	toxicity	toxicity		
Mammals – acute	108 (47%)	99 (43%)	15 (7%)	8 (3%)	
Mammals – long term	0 (0%)	16 (7%)	116 (50%)	98 (43%)	
Birds – acute	73 (32%)	134 (58%)	14 (6%)	9 (4%)	
Birds – long term	83 (36%)	99 (43%)	3 (1%)	45 (20%)	
Fish – acute	17 (7%)	175 (76%)	34 (15%)	4 (2%)	
Fish – long term	31 (13%)	136 (59%)	27 (12%)	36 (16%)	
Aquatic invertebrates – acute	17 (7%)	165 (72%)	41 (18%)	7 (3%)	
Aquatic invertebrates – long term	30 (13%)	128 (56%)	41 (18%)	31 (13%)	
Aquatic plants – acute	19 (8%)	94 (41%)	28 (12%)	89 (39%)	
Algae – acute	47 (20%)	154 (67%)	21 (9%)	8 (3%)	
Honeybees – acute	55 (24%)	142 (62%)	23 (10%)	10 (4%)	
Other terrestrial arthropods* – not available	49 (21%)	10 (4%)	27 (12%)	144 (63%)	
Earthworms – acute	9 (4%)	207 (90%)	5 (2%)	9 (4%)	
Earthworms – long term	13 (6%)	109 (47%)	2 (1%)	106 (46%)	
Other soil macro-organisms* – acute	0 (0%)	3 (1%)	3 (1%)	224 (97%)	
Other soil macro-organisms* – long term	7 (3%)	14 (6%)	0 (0%)	209 (91%)	

- 230 active substances (a.s.) → human risks

	Yes, known to cause a problem	No, known not to cause a problem	Possibly, status not identified	No data found
Carcinogen?	12 (5%)	126 (55%)	81 (35%)	11 (5%)
Mutagen?	3 (1%)	106 (46%)	13 (6%)	108 (47%)
Endocrine distrupter?	8 (4%)	55 (24%)	42 (18%)	125 (54%)
Reproduction/development effects?	56 (24%)	47 (20%)	107 (47%)	20 (9%)
Acetyl cholinesterase inhibitor?	10 (4%)	194 (85%)	7 (3%)	19 (8%)
Neurotoxicant?	16 (7%)	147 (64%)	30 (13%)	37 (16%)
Respiratory tract irritant?	51 (22%)	76 (33%)	17 (7%)	86 (38%)
Skin irritant?	58 (25%)	133 (58%)	29 (13%)	10 (4%)
Skin sensitiser?	49 (21%)	32 (14%)	21 (9%)	128 (56%)
Eye irritant?	85 (37%)	110 (48%)	25 (11%)	10 (4%)
Phototoxicant?	1 (<1%)	36 (16%)	4 (2%)	189 (82%)

- 230 active substances (a.s.) → metabolites

- 230 active substances (a.s.) → pesticide input

Crop	Parameter	NEU	CEU	SEU
Cereals	Number of a.s.	77	51	88
	Σ a.s. Applications (kg ha-1 year-1) *	31	18	31
Dry Pulses-Vegetables-Flowers	Number of a.s.	49	30	68
	Σ a.s. Applications (kg ha-1 year-1) *	1,210	713	1,196
Grapes	Number of a.s.	40	19	56
	Σ a.s. Applications (kg ha-1 year-1) *	54	1,046	1,088
Grassland	Number of a.s.	8	7	8
	Σ a.s. Applications (kg ha-1 year-1) *	4	6	4
Maize	Number of a.s.	21	18	23
	Σ a.s. Applications (kg ha-1 year-1) *	8	7	9
Non-Permanent Industrial crops	Number of a.s.	28	18	32
	Σ a.s. Applications (kg ha-1 year-1) *	18	11	19
Permanent crops	Number of a.s.	29	9	39
	Σ a.s. Applications (kg ha-1 year-1) *	60	45	157
Root crops	Number of a.s.	58	30	64
	Σ a.s. Applications (kg ha-1 year-1) *	198	178	280

^{*}conservative approach: assume all a.s. allowed per crop-region combination are applied, at the same time, and at their highest pesticide input scenario

Predicted environmental concentrations in soil (PECs)

Cman	Danamatan	PEC 0			PEC 100			PEC plateau		
Crop Parameter		NEU	CEU	SEU	NEU	CEU	SEU	NEU	CEU	SEU
Cereals	Number of a.s.	77	51	88	60	40	67	37	22	41
Cereais	Σ all a.s. PECs	25.4	14.5	24	7.3	3.2	5.2	5.3	1.4	4.5
DPVF	Number of a.s.	49	30	68	40	23	53	26	14	30
DPVF	Σ all a.s. PECs	539.7	396.2	493.4	19.8	27.7	14.3	2.4	2.5	3.9
Cramas	Number of a.s.	40	19	56	33	15	47	28	10	37
Grapes	Σ a.s. PECs	22.4	182.6	196.8	9	4.8	10.1	4.7	2.1	5.4
Crassland	Number of a.s.	8	7	8	5	6	5	2	2	2
Grassland	Σ all a.s. PECs	2.9	6.5	2.9	0.6	0.8	0.6	< 0.1	< 0.1	< 0.1
Moire	Number of a.s.	21	18	23	14	12	16	4	4	5
Maize	$\boldsymbol{\Sigma}$ all a.s. PECs	6.8	6.5	8.5	1	0.5	1.2	0.1	0.1	0.2
Non-Permanent	Number of a.s.	28	18	32	22	15	27	12	6	14
Industrial crops	Σ all a.s. PECs	16.3	11.6	20	5.5	3.9	6.8	1.3	1	1.5
Permanent	Number of a.s.	29	9	39	23	6	29	16	5	22
crops	Σ all a.s. PECs	19	19.9	85.3	6	7.2	6.9	2.7	1.8	3.2
Doot orong	Number of a.s.	58	30	64	44	22	48	29	10	29
Root crops	Σ all a.s. PECs	92.8	61.5	195.9	19.5	5.8	19.3	1.9	0.8	1.9

© Authors. All rights reserved

*DPVF: Dry pulses-vegetables-flowers; ** PECs unit: mg/kg

Predicted environmental concentrations in soil (PECs)

With Predictions-based thresholds

Predicted environmental concentrations in soil (PECs)

With Predictions-based thresholds

Soil Quality Mobile App (SQAPP)

© Authors. All rights reserved

Predicted environmental concentrations in soil (PECs)

ACCUMULATION FACTOR

^{*}Accumulation factor (AF)=PEC accumulated/PEC 0

^{*}PEC accumulated=PEC0+PECplateau

Predicted environmental concentrations in soil (PECs)

Average of NEU, CEU and SEU

Crop	NPUR ==> Hban						
_	PE	C 0	PEC	100	PEC plateau		
	Number \sum a.s.		Number \sum a.s.		Number	\sum a.s.	
	♦ a.s.	▼ input	♦ a.s.	▼ input	♦ a.s.	▼ input	
Cereals	44%	73%	39%	56%	21%	20%	
DPVF	24%	3%	20%	17%	21%	31%	
Grapes	14%	22%	14%	71%	18%	46%	
Grassland	100%	100%	100%	100%	100%	100%	
Maize	82%	96%	88%	96%	62%	38%	
NPIC	70%	93%	70%	91%	71%	94%	
Perm. crops	13%	25%	17%	52%	19%	48%	
Root crops	42%	20%	38%	46%	42%	42%	

NPUR ==> Pban					
	PEC plateau				
Number		\sum a.s.			
•	a.s.	▼ input			
	30%	36%			
	49%	44%			
	42%	25%			
	100%	100%			
	85%	70%			
	79%	50%			
	54%	46%			
	51%	45%			

PECs and predictions-based thresholds Vs measurements and measurements-based thresholds - Silva et al. 2019

Permanent crops (n=44)

© Authors. All rights reserved

Conclusions

- Unacceptable effects of currently use pesticides in non-target organisms
- Knowledge gaps for several endpoints (& no data for mixtures)
- Highest pesticides content:
 - in dry pulses-vegetables-flowers and grapes
 - in SEU
- Pesticide use restrictions leads to a substantial attenuation of soil contamination
- Predictions-based thresholds resulted in very low soil protection
- Harmonized pesticide use and distribution data is needed to validate PECs, and PECs derivate indicators, including Toxicity exposure ratios (TERs) used in pesticides approval process.

Thank you for your attention!

