Large-scale alternative detection systems for Cosmic-Ray Neutron Sensing

Markus Köhli1,2, Jannis Weimar1, Benjamin Brauneis1 and Ulrich Schmidt1

1 Physikalisches Institut, Heidelberg University, Heidelberg, Germany
2 Physikalisches Institut, University of Bonn, Bonn, Germany
Aim of CRNS detector development: decrease uncertainty of neutron measurement (ΔN)

Key factor 1: Statistical uncertainty

Key factor 2: Systematic uncertainty

Precision
Statistical uncertainty

Count rate considerations

Poisson statistics:

\[
\Delta N = \sqrt{N} \rightarrow \frac{\Delta N}{N} = \frac{1}{\sqrt{N}}
\]

Low statistical uncertainty through high count rates N/s

Count rate [N/s] =

\[
A \ [m^2] \times R(E,\phi) \ [%] \times I_n(E) \ [N/s/m^2]
\]

Surface Area A: The larger the detector the more often it is hit by neutrons.

Response function R: Probability to detect a neutron that hits the detector.

Neutron Flux I_n: Relevant observable to determine soil moisture.
Statistical uncertainty
Count rate considerations

High sensor count rate by:
- large effective area
- moderate response function
- adaptable multi-counter system
- Boron-lined tubes (thermal efficiency 10%)
Systematic uncertainty

- False positive signals, e.g. other particles

- Detection of neutrons that are weakly sensitive to water
Systematic uncertainty
False positive detections

The proportional counter: radiation ionizes the gas inside the counter. Electrons generated in this process are collected at a central wire. This charge pulse can be read out via appropriate electronics (see yellow pulse on the right).

Desired neutron signal

Undesired signals

Boron neutron conversion: neutrons are being absorbed by 10B, which decays immediately into highly ionizing particles.

False positive detections: Other secondary cosmic rays, terrestrial radiation and intrinsic radioactivity of the detector material that ionize the gas of the counter.
Systematic uncertainty
False positive detections

- Pulse shape is different for various particle species
- Use pulse length and pulse height to discriminate between neutrons and other particles

2-D information of pulse height and pulse length

\[\text{Pulse height} \quad \text{Pulse length} \]

\[\text{β-radiation} \quad \text{neutrons} \]

Background-suppressed neutron signals of a low pressure tube
Systematic uncertainty
Detection of neutrons that are weakly sensitive to water

Thermal shield:
The thermal neutron intensity (leftmost peak) reacts differently and weaker to soil moisture changes than the epithermal to fast regime (water sensitive domain). By adding a strong absorber at the outside of the detector these neutrons are excluded from the signal and the neutron count rate response to soil moisture improves.

Gadolinium coating
Sensitivity
Improve detector response

Detector response to soil moisture dependent on the moderator thickness. All detector configurations feature a thermal shield except for '25mm no Gd'.

(a): SNR according to the definition of sec. 3.1. (c): dynamical range or signal contrast, rates normalized to the detector setup with 27.5mm moderator thickness and a thermal shield.

The signal-to-noise ratio (SNR) describes the ratio between the detected neutrons that relate to the environmental hydrogen content (signal) to such which do not (noise). It determines the change in detected neutron count rate per hydrogen content change. With increasingly moist conditions, the sensitivity to hydrogen content changes decreases steadily until it eventually saturates due to the hyperbolic relationship to theta. In close-to saturated conditions a high ratio is critical for the assessment of water resources.
Field tests

Comparison of different CR probes installed at the Marquardt site (University of Potsdam, Germany). The time series show raw data from the probes, which mainly accounts to atmospheric pressure changes. The inlet shows two weeks of data with all probes scaled to each other.
Precise measurement

High count rate

Exclude thermal neutrons

Low susceptibility to other radiation