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Geodesy and its Objectives

“Geodesy is what geodesists do for their living.”

Helmut Moritz

“Geodesy is the science of measurement and mapping of the Earth’s surface.”

Friedrich R. Helmert

“The objective of geodesy is to determine the figure and external gravity field of the
Earth, as well as its orientation in space, as a function of time, from measurements on
and exterior to the Earth’s surface.”

[Torge, Müller 2012]
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Geodesy and its Objectives

◦ Geodesy allows us to learn more about our planet, its properties and dynamics.
◦ Results have an impact on important related fields such as navigation and climate research.
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GRACE Mission
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Why?
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GRACE Mission - Impact
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Chronometric Geodesy

Relativity offers yet another measurement device to probe grav. fields: clocks
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Clocks and Fiber Networks

[Lisdat et al. 2016] 8



Optical atomic clocks
Modern clocks at the 10−18-level go off one second in the age of the universe
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Fundamental Notions

◦ According to Newton, the gravitational force is

~F12 = −G m1m2

r2 ~er (1)

◦ For the conservative force, we introduce the gravitational potential

~a = −~∇U , ∆U
(
~X
)

= 4πGρ
(
~X
)

(2)

◦ Including centrifugal effects, we define the gravity potential

W
(
~X
)

= U
(
~X
)

+ V
(
~X
)
, V

(
~X
)

= −1
2ω

2R2 sin2 Θ (3)

◦ Rigidly co-rotating observers measure gravity

~g = −~∇W , g = ||~g|| (4)

◦ In our (physical) sign convention, the grav. potential is negative since it refers to an
attractive force.
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Fundamental Notions II

◦ U can be expanded into a series of spherical harmonics,

U = −GM
R

∞∑
l=0

l∑
m=0

(
Rref
R

)l
Pl(cos Θ) [Clm cos(mΦ) + Slm sin(mΦ)] . (5)

◦ Under the assumption of axisymmetry the expansion reduces to

U(R,Θ) = −GM
R

∞∑
l=0

(
Rref
R

)l
Jl Pl(cos Θ) . (6)

◦ The expansion parameters (multipole moments) Clm, Slm, Jl are dimensionless.
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Earth Gravity Model EGM96 - Global and Local Scales

red: higher gravity, purple: lower gravity
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Reference Surfaces

The Earth’s geoid is defined by the level surface of the gravity potential W which coincides
best with mean sea level, such that

−W
(
~X
)∣∣

geoid = W0 = constant ,

with a constant W0 = 6.263 685 60× 107 m2 s−2, the numerical value that complies with
modern conventions; see [Sanchez et al. 2016].

The Earth’s reference ellipsoid is a bi-axial ellipsoid of revolution that is a best fit to the Earth’s
geoid. It is a geometrical concept and defined by any two parameters of the set {a, b, f, e}.

◦ The (height) differences between the geoid and reference ellipsoid are called geoid
undulations.
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Geoid Undulations

14



Time-independent Geoid in Newtonian Gravity

◦ For the existence of a time-independent geoid, we make the following three idealizing
assumptions: [DP et al. 2017]

(A1): The Earth is in rigid motion.
(A2): The Earth rotates with constant angular velocity about a fixed rotation axis.
(A3): There are no external forces acting on the Earth.

◦ For ~x = ~x0(t) + R(t) ~x ′ with ω(t) = Ṙ(t) R(t)−1 this translates into

(A1’) The velocity gradient ∇⊗ ~v is antisymmetric.
(A2’) The time derivative of the matrix ω vanishes, ω̇ = 0.
(A3’) The change of the acceleration is ~̇a = ω~a.
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The Normal Gravity Field

◦ Let the reference ellipsoid be also an equipotential surface of an artificial gravity potential
WN ( ~X). Then, we call it a level ellipsoid [Torge, Müller 2012].

The Earth’s normal gravity potential WN is uniquely defined by (i) postulating that the refer-
ence ellipsoid is indeed a level ellipsoid of WN and (ii) the values for the mass constant GM
and the rotational velocity ω. The value of |WN | on the level ellipsoid is W0.

WN (R,Θ) = −GM
R

∞∑
l=0

J2l

( a
R

)2l
P2l(cos Θ)− 1

2ω
2R2 sin2(Θ) (7)

J0 = 1 , J2l = (−1)l 3(E/a)2l

(2l + 1)(2l + 3)

(
1− l − 5l a

2

E2 J2

)
, ∀ l > 1 (8)
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Height Measurements and Leveling

◦ How do you define and determine height (differences)?
◦ Which measurement devices do we need?
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Height Measurements and Leveling

◦ Let ~n be the direction of the local plumb line, then∫ P2

P1

dW = W2 −W1 =
∫ P2

P1

g dn ,
∮
g dn = 0 ,

∮
dn 6= 0 . (9)

◦ Hence, the sum of “height” increments along a leveling path is not a good height measure.
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Height Measurements and Leveling

◦ For a point P on or above the Earth’s surface, we define the geopotential number CP by∫ P

P0

g dn = WP −WP0 = WP +W0 = W0 − |WP | =: CP , (10)

where P0 is a point on the geoid.

◦ For the orthometric height H (height above the geoid) we obtain

CP = HP
1
HP

∫ HP

0
g dH =: HP ḡ ⇒ HP = CP

ḡ
, (11)

where ḡ is the average gravity along the plumb line from P0 to P .
◦ Be aware of our (physical) sign convention!
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Geodetic Concepts in Relativistic Gravity

Relativistic geodesy is deeply related to the physics of timelike Killing congruences.
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Geodetic Concepts in Relativistic Gravity



First Approach and Previous Results

“The relativistic geoid is the surface nearest to mean sea level on which precise clocks
run with the same speed.”

[Bjerhammar 1985, 1986]

◦ Needs to be clarified: “precise clocks” → standard clocks, “run with the same speed” →
vanishing redshift
◦ Post-Newtonian approaches: [Soffel et al. 1988], [Kopeikin et al. 2015, 2016], [Shen, 2011]
◦ Exact approach by [Oltean et al. 2015], using quasi-local frames
◦ In [Soffel et al. 1988]: introduced the notions of a u-geoid and an a-geoid in the pN

framework.
◦ Here, the results of Bjerhammar, Kopeikin, and Soffel et al. are used as inspiration and

starting point to construct a general framework.
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The Redshift in General Relativity

z + 1 := ν

ν̃
= dτ̃

dτ
= lim

∆τ→0

∆τ̃
∆τ =

(
gµν

dλµ

ds

dγν

dτ

)∣∣∣∣
γ(τ)(

gρσ
dλρ

ds

dγ̃σ

dτ̃

)∣∣∣∣
γ̃(τ̃)

=
k(u)|γ(τ)

k(ũ)|γ̃(τ̃) (12)

[Kermack et al. 1934, Brill 1972] 23



The Redshift Potential

◦ We call a scalar function φ a redshift potential for an observer congruence u if for any two
integral curves γ and γ̃ of u we have

log(z + 1) = φ
(
γ̃(τ̃)

)
− φ

(
γ(τ)

)
. (13)

◦ φ is a time-independent redshift potential iff [Hasse, Perlick 1988]

exp(φ)u =: ξ (14)

is a Killing vector field. Hence, the spacetime must be stationary.
◦ The general metric can then be written as

g = e2φ(x) [−(cdt+ αa(x)dxa)2 + αab(x)dxadxb
]
. (15)

◦ Level surfaces of φ are called isochronometric and the redshift is

z + 1 = ν

ν̃
= eφ|γ̃−φ|γ =: e∆φ . (16)
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Clock Comparison via Fiber Links

◦ Use the optical metric [DP et al. 2017]

g = e2φ(x) [−n(x)−2(cdt+ αa(x)dxa)2 + αab(x)dxadxb
]
, (17)

◦ independent of the fiber’s shape

z + 1 = ν

ν̃
= eφ|γ̃
eφ|γ

n|γ
n|γ̃

. (18)
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Some Redshift Experiments

Year Experiment Details
1960 Pound-Rebka 22.56 m tower, z = 2.46× 10−15, error ≈ 10 %
1976 GPA Scout rocket 10000 km with H-maser, 1.4× 10−4

2018 RELAGAL Using Galileo satellites 5 & 6, 2.67× 10−5

2020 ACES Clocks on the ISS, 10−6
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Observer Congruences

◦ The motion of a congruence with tangent vector field u can be decomposed into

Dνuµ = ωµν + σµν + 1
3θPµν −

1
c2
uνaµ , Pµν = δµν + 1

c2
uµuν , (19)

ωµν := P ρµ P
σ
ν D[σuρ] , σµν := P ρµ P

σ
ν D(σuρ) −

1
3θPµν , θ := Dµu

µ .
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Observer Congruences II

◦ We can define the rotation vector (twist) [Ehlers 1961]

ωµ := 1
2cη

µνσλuνωσλ = 1
2c η

µνσλuν∂λuσ . (20)

◦ For a Born-rigid congruence, we have [Ehlers 1961, 1991]

Pµν ω̇
ν = 0 , Pµν ȧ

ν = ωµνa
ν ⇔ D[νaµ] = 0 . (21)

◦ This means there exists an acceleration potential φ̂ such that aµ = c2∂µφ̂

◦ This is true for a Born-rigid congruence iff [Salzmann, Taub 1954] eφ̂u = ξ

⇒ φ̂ ≡ φ and a = c2dφ . (22)

◦ Generalizes [Soffel et al. 1988]
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Relativistic Gravity Potential

◦ We now define a new artificial relativistic gravity potential U∗ by [DP et al. 2019, 2020]

eφ =: 1 + U∗

c2
⇔ U∗ = c2

(
eφ − 1

)
= c2

(√
−g00 − 1

)
. (23)

◦ We have [U∗] = [c2] = m2/s2 and the weak-field limit is

U∗ −→
c→∞

W , U∗pN = W + 1
2
U2

c2
[Soffel et al. 1988] . (24)

◦ Then, redshift and acceleration are given by

1 + z = ν1

ν2
= eφ2−φ1 = 1 + U∗2 /c

2

1 + U∗1 /c
2 = 1 + U∗2 − U∗1

c2
+O(c4) , (25a)

a = −c2dφ = −c2 ∂φ

∂U∗
dU∗ = −dU∗

1 + U∗/c2
. (25b)
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The Relativistic Geoid

For a spacetime equipped with a metric in the form below and a congruence of observers on
t-lines, the relativistic geoid is a particular level surface of the relativistic gravity potential U∗
such that U∗

∣∣
geoid = U∗0 = const. [DP et al. 2020].

For the value U∗0 there are multiple choices, e.g.,
(i) Choose the Newtonian value such that U∗0 = −W0

(ii) Define a master clock which is, by definition, situated on the geoid and singles out one
isochronometric surface

g =
(

1 + U∗

c2

)2 [
−(cdt+ αa(x)dxa)2 + αab(x)dxadxb

]
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IAU Resolutions and U ∗0

◦ We start with the metric in co-rotating coordinates such that observers move on integral
curves of ∂t,

g = e2φ(x) [−(cdt+ αa(x)dxa)2 + αab(x)dxadxb
]
. (26)

◦ The relation between coordinate time t and proper time on the geoid τg is [DP 2019]

dτg = eφ0(x)dt =
(

1 + U∗0
c2

)
dt =:

(
1− L∗g

)
dt ⇒ U∗0 = −L∗gc2 . (27)

◦ L∗g, which fixes the relation between geocentric coordinate time TCG and time on the
geoid (TAI), is adopted as a defining constant by IAU resolution.

◦ Since for 1pN: U∗ ≈W this also fixes a value for W0, which is then a derived constant.
◦ According to resolution B1.9 (2000): Lg = 6.969290134 10−10 [IAU 2000].
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Parametrized post-Newtonian Spacetime

◦ In harmonic non-rotating coordinates, we have [Will 2014]

g00(x) = −
(

1 + 2U(x, y, z)
c2

+ 2βU(x, y, z)2

c4

)
+O(c−6) , (28a)

g0i(x) = − 2(γ + 1) |U i(x, y, z)|
c3

+O(c−5) , (28b)

gij(x) = δij

(
1− 2γU(x, y, z)

c2

)
+O(c−4) . (28c)

◦ with φ→ φ′ = φ− ωt we transform into a rotating reference system and obtain

U∗ppN
∣∣
geoid = W + U2(β − 1/2)

c2

∣∣∣∣
geoid

= U∗0 = const. (29)

1 + z = ν1

ν2
= 1 + W2 −W1

c2
+O(c−4) (30)
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Asympt. & elementary flat Weyl solutions

◦ In spheroidal coordinates (x, y), the metric is [Quevedo 1989]

g = −e2ψc2dt2 +m2e−2ψ(x2 − 1)(1− y2)dϕ2 (31)

+m2e−2ψe2γ(x2 − y2)
(

dx2

x2 − 1 + dy2

1− y2

)
, where ψ =

∞∑
l=0

(−1)l+1qlQl(x)Pl(y)

◦ Quevedo moments ql in the Newtonian limit [Quevedo 1989, Ehlers 1997]

ql = (−1)l (2l + 1)!!
l!ml

RlrefJl . (32)

◦ Redshift potential for rigidly co-rotating observers [DP et al. 2017]

eφ(x,y) =
√
e2ψ(x,y) − ω2

c2
m2(x2 − 1)(1− y2)e−2ψ(x,y) . (33)
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Schwarzschild-Droste, Erez-Rosen, & Kerr spacetime

U∗Schwarzschild
c2

=
√

1− 2GM
c2r

− ω2

c2
r2 sin2 ϑ− 1 , (34)

U∗ER
c2

=
√
e2ψER(x,y) − ω2

c2
(GM/c)2(x2 − 1)(1− y2)e−2ψER(x,y) − 1 (35)

with ψER(x,y) = 1
2 log

(
x− 1
x+ 1

)
+ q2

(3y2 − 1)
2

(
(3x2 − 1)

4 log
(
x− 1
x+ 1

)
+ 3

2x
)
,

U∗Kerr
c2

=

√
1− 2mr

ρ(r, ϑ)2 + 4 ω
c

amr sin2 ϑ

ρ(r, ϑ)2 − ω2

c2
sin2 ϑ

(
r2 + a2 + 2mra2 sin2 ϑ

ρ(r, ϑ)2

)
− 1 . (36)

See [DP et al. 2020] for details
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Relativistic Normal Gravity I

◦ For the Newtonian normal gravity field WN the moments are

J0 = 1 , J2l = f(J2, E, a, l) , ∀ l > 1 .

◦ Construct a general relativistic spacetime, which is a vacuum solution, asymptotically +
elementary flat, static, axisymmetric, and yields WN in the Newtonian limit → Weyl
solution [Weyl 1916]. For details see [DP 2019].
◦ In spheroidal coordinates (x, y), the metric is [Quevedo 1989]

gµνdx
µdxν = −e2ψc2dt2 +m2e−2ψ(x2 − 1)(1− y2)dϕ2

+m2e−2ψe2γ(x2 − y2)
(

dx2

x2 − 1 + dy2

1− y2

)
, (37)

where ψ =
∞∑
l=0

(−1)l+1qlQl(x)Pl(y) (38)
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Relativistic Normal Gravity II

◦ Now, we use a Weyl spacetime for which we determine the Quevedo moments in the
Newtonian limit [Quevedo 1989, Ehlers 1997]

ql = (−1)l (2l + 1)!!
l!ml

RlrefJl . (39)

◦ With the J2l above and only even terms in the expansion for ψ:

ψN = −
∞∑
k=0

(4k + 1)!!
(2k)!

(
Rref
m

)2k
J2kQ2k(x)P2k(y) (40)

= −
∞∑
k=0

[
(4k + 1)!!

(2k)!

(
Rref
m

)2k
J2k P2k(y)

×

(
log
(
x+ 1
x− 1

)
P2k(x)− 2

k−1∑
i=0

4k − 4i− 1
(2k − i)(2i+ 1)P2k−2i−1(x)

)]
,

= −Q0(x)− 15
2

(
Rref
m

)2
J2Q2(x)P2(y)−

∞∑
k=2

. . .
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Relativistic (Chronometric) Height Definition

◦ The orthometric height is HP = CP /ḡ and CP = WP +W0 can be determined by
comparing clocks on the geoid and at P :

z + 1 = ν0

νP
= 1 + WP +W0

c2
+O

(
c−4) ⇒ H = c2z

ḡ
. (41)

◦ However, it is a mixture of Newtonian and relativistic concepts. Better: define redshift
potential numbers [DP 2019]

C∗P := c2
(
eφP − eφ0

)
= U∗P − U∗0 = c2eφ0z , (42)

◦ where eφ0 = 1 + U∗0 /c
2. Then we define the chronometric height

H∗P = C∗P
ā

= c2eφ0z

ā
. (43)

◦ Here, ā is the average of a = c2dφ along the normal w.r.t. isochronometric surfaces
between the geoid and P .

37



Applications

Let us consider the following two applications:

◦ The difference between the relativistic and Newtonian geoids for the choice |U∗0 | = W0.
The relativistic geoid is isometrically embedded into R3 to enable the comparison. The
embedding is necessary to overcome any coordinate ambiguities. See [DP et al. 2020] for
details.

◦ Isochronometric surfaces in strong gravity regimes: a Kerr black hole with a/m = 0.99
close to the ergosphere. Results for relativistic geodesy can also be applied to the strong
gravity regime.
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Application I

Difference of the relativistic and Newtonian geoid after isometrically embedding into Euclidean
space R3

Figure from [DP et al. 2020]
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Application I

Difference of the relativistic and Newtonian geoid without embedding

Figure from [DP et al. 2020]
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Application II

Isochronometric surfaces: a/m = 0.99 at r0/m = 2.2, 3, 7
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Summary and Outlook

Summary

◦ It was shown how Newtonian concepts in conventional geodesy can be generalized and
lifted to the framework of General Relativity.
◦ The leading order difference between the conventional geoid an its relativistic

generalization is about 2 mm.

Outlook

◦ Not all information is encoded in the geoid surface.
◦ If the vacuum field equation is fulfilled, ∃ a potential for the twist of the congruence

wµ = ∂µψ, ωµ = ηµνσλξν∂λξσ (44)

◦ The gradient of the twist potential causes the Sagnac effect ∆t =
∫
S
εµνρσu

νωµdSρσ

◦ Redshift potential, twist potential, and spatial metric are needed, see [Bäckdahl 2006]
◦ Framework for relativistic Geodesy → Physics of timelike Killing congruences; norm and

twist of Killing vector fields.
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A special thanks to all my collaborators and colleagues, especially to
◦ Eva Hackmann, Dirk Puetzfeld, Volker Perlick, Claus Lämmerzahl, Florian Wöske, Felix

Finke, Meike List, Benny Rievers, Sandro Gödtel
◦ and the entire ZARM team, geo-Q CRC, Quantum Frontiers Excellence Cluster, and

Models of Gravity RTG!
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