

EGU 2020 Session CR3.3 Snow avalanche dynamics: from basic physical knowledge to mitigation strategies

Impact of land cover on avalanche hazard: how forest cover changes affect return periods and dynamical characteristics simulated by a statistical-numerical avalanche model.

Taline Zgheib¹, Florie Giacona¹, Anne-Marie Granet-Abisset², Samuel Morin³, Nicolas Eckert¹

¹ Univ. Grenoble Alpes, INRAE, ETNA, 38000 Grenoble, France

² Univ. Grenoble Alpes, UMR CNRS 5190 Laboratoire de Recherche Historique Rhône-Alpes (LARHRA)

³ Univ. Grenoble Alpes, Université de Toulouse, Météo-France, Grenoble, France, CNRS, CNRM, Centre d'Etudes de la Neige, Grenoble, France

Context

Road

Objective

We hypothesize on the temporal variability of μ , inherited from its dependability on land cover, particularly the forest fraction.

Forest fraction = the aerial percentage of the terrain covered by forests within the extension of the avalanche path.

Objective: show how the evolution of the forest fraction within the avalanche path affects the return period of runout distances and further dynamical characteristics of simulated avalanches.

Study area and collected data

Selected Path

Abriès 5 : RAVIN DE COTE-BELLE

-The selected avalanche path is located in Abriès, a municipality of the Queyras massif in the Southern French Alps.

Path Characteristics

- 21 recorded events in total
- 3 events before 1952
- 17 events after 1952 (used for calibration.)

Snow avalanche data

	Descriprion
X _{start} (m)	release abscissa
V _{stop} (m ³)	deposit volume
h _{start} (m)	mean snow depth in the release zone
L _{start} (m)	length of release zone
I _{start} (m)	width of release zone
V _{starteq} (m ³)	equivalent release volume
X _{stopdata} (m)	runout distance

Topography and available historical data for the case study. Abriès township, path EPA No. 5.

<u>Methodology</u>

Model parameter calibration

- Bayesian statistical-dynamical model used to calibrate of the depth- averaged Saint –Venant propagation model (denoted as G in the acyclic graph) using local data.
- The friction law used is the Voellmy fluid flow law.

From the calibration process, we obtain the posterior distribution of the model parameters.

5

Where f=forest fraction

- The model is implicitly calibrated for the mean forest fraction of the calibrated period (1960-2018). This fraction f=0.35 corresponds also to the forest fraction in 1980.
- We introduce a fifth parameter 'g' that characterizes the dependency of μ on the forest fraction.

Results: Runout distance

posterior distribution

posterior distribution

P(Xstop>1000 m) and P(Xstop > 1840)decrease when the forest fraction increase

For a completely reforested path, there is no chance that snow avalanches will reach the road.

Results overview: return period Return period of avalanches that reach the road at X=1840 m increase with an increasing forest fraction. f=0 f=0.16 f=0.24 Forest 1825 : f=0.16 Forest 1948 : f=0.24 Forest 1980 : f=0.35 (mean) f=0.35 Forest 2017: f=0.46

Results overview: return period

Displacement of Xrout is more significant for smaller return periods (less than 20 years).

Xrout (m)

Results overview: evolution of the maximum velocity:

The graphs below show the evolution of the P(Vmax|Xstop>X) of the maximum velocity at X=1000 m for f=1, 0.46, 0.35, 0.24, 0.16 and 0.

P(Vmax>10)= P(Vmax>10 I Xstop>1000) P(Xstop>1000)

When the forest fraction decrease, avalanches with higher velocities occur.

No extream variation in the mean maximum velocity between forest fractions

Results: evolution of the maximum flow depth:

The graphs below show the evolution of the P(hmax $\mid Xstop>X$) at X=1000 m for f = 1 , 0.46,0.35, 0.24 ,0.16 and 0.

Maximum flow depth sim X= 1000m;f= 0.24

95% CI: 1.01± 0.02

 $\sigma:0.8$

P(hmax|Xstop>X) 0.5 0.4 0.3 u: 1.01

No extream variation in the mean maximum snow depth between forest fractions

Future work

- 1. Asses how evolution of the forest fraction impacts, the return period and dynamical characteristics of snow avalanches when included:
 - a) As a part of the turbulent friction ξ . To increase TBF ξ must be decreased.
 - b) As a part of both the turbulent friction ξ and the dry –Coulomb friction μ .
- 2. Future work will include the explicit calibration of the forest cover dependency within the statistical-dynamical approach.

List of references

Eckert et al., 2010

Feistl et al.,2014

Gruber et al.,2007

Gubler and Rychetnik, 1991

Contact details of corresponding author:

Taline zgheib

Email: taline.zgheib@inrae.fr

Linkedin: https://www.linkedin.com/in/talinezgheib