The role of intrusive magmatism in shaping Venus’ present-day crust and its age distribution

Sruthi Uppalapati
Tobias Rolf*
Stephanie Werner

*Contact: Tobias.Rolf@geo.uio.no
Venus Open questions

Grand scheme: Why is Venus so different from Earth?

→ How thick is Venus’ crust? How much magmatic/volcanic activity at present?

→ How old is Venus’ surface, compared to e.g. the Moon, Mars, Mercury?

→ Is the surface age uniform or are there substantial lateral variations?

What can models of Venus’ interior thermo-magmatic evolution tell us about these?
Venus Evolution model

StagYY [Tackley, 2008] in 2D spherical annullus geometry

→ Strongly temperature-dependent viscosity, no plasticity: stagnant lid
→ Evolution from early on (4.4 Ga) until present-day with evolving internal heating and core cooling
→ Magmatism and extrusive volcanism: immediate extraction of magma and placement as basaltic crust on surface

For details: see Armann & Tackley (2012), Rolf et al. (2018)

Now: Intrusive magmatism [see Lourenco et al. (2018,2020)]

With intrusions, not all melt is extracted and placed on surface:
→ Melt pockets with high melt fraction can exist at shallow depth
→ Would cause very low viscosity, effective thermal conductivity needed to parametrise heat flux:

\[k_h = \exp \left(\frac{k_{\text{max}}}{2} \left[1 + \tanh \left(\frac{f - f_c}{df} \right) \right] \right) - 1 \]

\[k_h (f \ll f_c) \to 0 \]
\[k_h (f \sim f_c) \to \text{rapid increase} \]
\[k_h (f \gg f_c) \to 10^5 \]

\[f_c = 35\% = \text{critical melt fraction} \]
\[k_{\text{max}} = 10^5 = \text{max conductivity} \]
Model Magmatism

- Partial melting occurs where the temperature exceeds the solidus
- Melting dominantly in upper mantle (< 300 km)

Extrusion:
- Immediate extraction of hot melt to surface (with probability f_E)
- Leads to volcanism and surface renewal

Intrusion:
- Emplacement at existing crustal base (with probability $f_I=100%-f_E$)
- Melt stays within model domain and affects heat transport (← previous slide)
- Weakening of crust, but no direct surface renewal

Conceptual illustration of the magmatic/volcanic processes implemented in the mantle evolution model.
Results

Present-day state (after 4.4 Gyr evolution)

Temperature

760 K
3240 K

Composition

Harzburgite
Basalt (Crust)

Considering intrusive magmatism has effects on:

- Mantle temperature (reduced)
- Mantle flow pattern (here, more plumes)
- Crustal thickness (here, thinner crust)
Results Crustal thickness evolution

Evolution of mean crustal thickness for different extrusion and intrusion probabilities.

With higher intrusion probability mean thickness is reduced:

- 112 km
- 100 km
- 91 km
- 87 km

20-25% thinner crust with dominantly intrusive magmatism

But model estimates are still larger than other estimates (typically a few 10s of km)

Present-day estimate (no actual data) of Venus’ crustal thickness in km based on James et al., 2013
However, absolute age estimates for Venus are uncertain:

\[750^{+47\%}_{-53\%} \text{ Myr} \quad \text{McKinnon et al. (1997)} \]
\[< 200 \text{ Myr} \quad \text{Bottke et al. (2016)} \]
Results Lateral age variations

Area and relative age estimate of the 11 categorized geological units on Venus as mapped by Ivanov & Head (2011). The red horizontal line denotes the mean surface age, after Kreslavsky et al., 2015.

Geological units are [Ivanov & Head, 2011]: (t) tesserae, (pdl) densely lineated plains, (pr) ridged plains, (mt) mountain belts, (gb) groove belts, (psh) shield plains, (rp) regional plains, (sc) shield clusters, (ps) smooth plains, (pl) lobate plains, (rz) rift zones.

Cumulative distribution of normalized (or relative!) surface age using the observed area and age estimates.
Results Lateral age variations

- Venus’ surface age is not completely uniform, ~15% seem younger
- Purely extrusive model predictions are less uniform than inferred from geology and crater statistics
- Age uniformity is worse with dominantly intrusive magmatism

Cumulative distribution of normalized surface age using the observed area and age estimates (dots + error bars).

The blue and red lines indicate results for two cases with different partitioning of extrusive (f_E) and intrusive (f_I) volcanism/magmatism.

The green dotted line denotes a perfectly uniform distribution.
Results Parameters

Mantle viscosity determines convective vigor and thus heat transport, mantle internal temperature and the amount of partial melting.

Reducing mantle viscosity leads to

1.) **reduced mean crustal thickness**
 - thinner thermal boundary layer
 - more efficient erosion of crustal base

2.) **increased mean surface age** (absolute)
 - more efficient heat loss
 → mantle cools faster

3.) **increased lateral age variations** (relative)
 - magmatism/volcanism begins to cease in colder, but not in hotter parts of the upper mantle

→ More parameter exploration is needed

Cumulative distribution of relative surface age for different mantle reference viscosities (defined at temperature 1613 K and 0 Pa pressure).
Summary

1.) Interior evolution models predict Venus’ global resurfacing history, now considering both extrusive and intrusive magmatic processes.

2.) Intrusive magmatism reduces resurfacing rates in the stagnant lid regime. Mean crustal thickness is reduced, mean surface age is higher (right tendency to match other independent estimates for Venus)

3.) Strong intrusive magmatism enhances lateral age contrasts. Yet, no model predicts a surface crust with both a mean age matching crater statistics estimates and high degree of uniformity

Perspectives

→ **Episodic overturns**: Mantle cools quicker with time, earlier cessation of volcanic activity is feasible. Surface is expected to be older (absolute), but relative variations will depend on duration and lateral extent of the overturn events (regional vs. global)

→ **3D models**: Detailed comparison to Venus’ surface characteristics requires 3D geometry