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GPS Stations at 79° North Glacier
• data rate: every 15 seconds 
• measurement period: July 2017 
• vertical accuracy: 0.1 m
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What: Viscoelastic Maxwell Material

draining creates flexure stresses in the ice shelf capable of
inducing both surface and basal fractures, both locally and
at a distance from the surface water feature. Under purely
elastic rheology, the filling of a surface water feature
produces a flexure stress only when it contains meltwater;
when the feature drains, the flexure stress reduces to zero. In
the case of a viscoelastic rheology, flexure stresses, initially
equal to the equivalent pure-elastic stress, decay over time
as permanent viscous deformation allows the lake load to be
balanced by buoyancy forces on the deformed ice shelf.
When the surface water feature then suddenly drains, a new
flexure stress, equally strong as, and of opposite sign to, that
initially created when the feature filled, is experienced by
the ice shelf. Viscoelasticity thus may link the sudden
drainage of the lakes on the Larsen B ice shelf to its break-up
several days later if the stresses resulting from drainage were
able to damage the ice shelf (e.g. by introducing fractures in
its surface and base that were subsequently capable of
yielding iceberg detachment).

In the present study, after developing a viscoelastic
treatment of ice-shelf flexure using the well-established thin-
plate approximation, we present as a demonstration an
application of the treatment to an idealized 1 year fill/drain
cycle of a supraglacial lake having idealized axisymmetric
geometry. Our application is intended as a demonstration to
motivate a future, more detailed study of the phenomena
(Banwell and MacAyeal, in press). Our idealization of the
fill/drain cycle and the simplification of the geometry
studied are motivated by discussions found in Banwell and
others (2013, 2014) and MacAyeal and Sergienko (2013).

CONCEPTUAL MODEL
Where viscoelastic behavior arises in Earth-science applica-
tions, it is typically represented by one of several highly
idealized conceptual forms (or combinations thereof) con-
sisting of simple mechanical arrangements of springs,
dashpots and friction plates. In the present study, we adapt
the Maxwell model (commonly cited to have originated in
Maxwell, 1867), represented by a spring and dashpot in
series, because it is useful when elastic and viscous
deformations govern the short- and long-term behaviors,
respectively, as is the case for many problems in glaciology.
To adapt the Maxwell model to the ice-shelf flexure
problem, we add another idealized mechanical feature to
the spring and dashpot in series: the buoyancy bucket. (An
alternative idealization would be to use an additional spring
that opposes the load causing deformation of the original
spring and dashpot series, such as is done in engineering
applications with the use of a Winkler foundation.) The
conceptual model we develop here is shown in Figure 1. In
this case, three devices, a spring, dashpot and ‘buoyancy
bucket’, are arranged in series, and suspended from a rigid
anchor point above a body of sea water.

When at rest, and free of any applied loads (represented
by weights put inside the bucket), the bucket is suspended
at a neutral reference position within the water (to allow
both positive and negative perturbations to the load
contained within the bucket), which is assumed inviscid.
When a load of mass M is added to the bucket, a tensile
force of equal magnitude is experienced by both the spring
and the dashpot (we disregard inertial effects). This tensile
force is equal to the load, Mg, where g is the gravitational
acceleration, minus the extra buoyancy force that is caused
by the bucket’s additional submersion into the sea water in
response to the elastic elongation of the spring. As time
progresses, this force will cause the piston in the dashpot to
extend in a manner that tends to lower the bucket further
into the water, allowing the bucket to generate a greater
buoyancy force. As the dashpot piston extends, and the
bucket displaces more water, the net force acting across
the spring and dashpot will reduce, thus allowing the
spring to contract towards its original unextended position.
Once sufficient extension of the dashpot piston has
allowed the buoyancy force to exactly compensate the
imposed load within the bucket, the force acting across
the spring and dashpot will vanish, and the system will be
in equilibrium.

THIN-PLATE APPROXIMATION
We adopt a thin-plate treatment of ice-shelf flexure that is
applicable to circumstances where the ratio of vertical to
horizontal length scales, H and L, respectively, is small
(H=L⌧ 1), and where the vertical displacement (assumed
constant through the depth of the ice shelf) due to flexure, ⌘,
is small compared withH (j⌘j⌧ H). We also assume that the
thickness of the ice shelf does not change significantly when
it is deformed by flexure, i.e. that the vertical strain and strain

rate are zero to leading order:
@w
@z
à 0 and

@ _w
@z
à 0, wherew

is the vertical displacement as a function of z the vertical
coordinate, assumed parallel to the thinnest dimension of the

ice shelf when it is unfixed and the overdot denotes
@

@t
,

where t is time. In this circumstance, we may write w and _w

Fig. 1. Idealized spring, dashpot buoyancy bucket system acting as
a conceptual metaphor for the response of a floating ice shelf to an
imposed surface load. At the initial time, t à 0, the ice shelf is at
rest, with the spring and dashpot at their initial, unstrained
geometries, and with the bucket only partially submerged. At some
time later, t > 0, a mass M is added to the bucket. Ignoring inertial
effects, the initial response is for all strain in the system to be caused
by extension of the spring, which extends by a distance needed to
counterbalance any load that is not compensated by buoyancy
associated with the bucket’s position within the water. As t!1,
the viscous response of the dashpot to the tensile force acting
across the spring allows the bucket to sink further, asymptotically
approaching a position where buoyancy forces completely
compensate the load within the bucket. In this asymptotic final
state, strain in the system is entirely associated with displacement of
the dashpot piston, as the spring will have relaxed back to its initial,
unstrained geometry.

MacAyeal and others: Viscoelastic ice-shelf flexure636

tidal 
forcing

viscous
flow

1 Continuum Mechanics

τ

σ0

E

t

ε

Figure 1.7: Creep function of the Kelvin-
Voigt model.

τ̄

ε0E

t

σ

Figure 1.8: Relaxation function of the
Maxwell model.

and purely viscous case. The deviatoric stress tensor is calculated through

σ
D = 2µεD + 2ηε̇D (1.72)

using σD = σD
e + σ

D
v and εD = εD

e = ε
D
v . A linear viscous fluid, see eqs. (1.66)

and (1.68), can also be categorized as a special case of a Kelvin-Voigt model as the
stresses are added up in a similar way. The characteristic time of a 3-D Kelvin-Voigt
model is given by τ= η/µ.

In contrast to the parallel structure, the Maxwell
material model describes a viscoelastic material,
where one spring and one damper are arranged in
series, see the 1-D rheological model in Fig. 1.9.
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Figure 1.9: Maxwell model.

Based on the geometric condition of compatibility for the case of elements ordered
in series, the strain results in

ε =
2∑

i=1

εi = εe+ εv. (1.73)

The differential equation of a Maxwell material is derived by using the assumption
σ = σe = σv additionally to the constitutive equations of an elastic and a viscous
material. Hence, the differential equation is given by

σ+
η

E

.
σ = η

.
ε. (1.74)

To solve this equation, either the viscous strain rate or the elastic strain is needed.
One possibility is that mechanical state variables are introduced, which are math-
ematically constructed and characterize structural properties of the material. This
procedure is explained in the following.
In the context of viscoelastic materials, it is possible to describe constitutive models
for inelastic materials based on the concept of internal variables. Internal variables
specify aspects of the internal structure of materials, which are correlated to dissi-
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model. Volume changes due to viscous forces might be included by the rate of volumetric strain in the stress168

deviator because its influence vanishes for the equilibrium state.169

The applied material law is only characterized through the stress deviator. For a viscoelastic Maxwell170

material, see Fig. 1, the deviatoric stress in the elastic and viscous elements is equal to the total deviatoric171

stress ‡D. Hence, the constitutive relation including the viscosity ÷ is given by172

‡D = 2÷Á̇D
v = 2µÁD

e (4)

where viscous or elastic quantities are indicated by (·)v or (·)e and the time derivative d(·)/dt is denoted by173

the superimposed dot. To solve this equation either the viscous strain rate or the elastic strain is needed. The174

additive decomposition of the strain tensor into an elastic and viscous part induces the required evolution175

equation for the viscous strain tensor Áv176

µ

1
ÁD ≠ ÁD

v
2

= ÷Á̇D
v . (5)

Hence, the viscous strain is used as an additional unknown, an internal variable. In general, internal variables177

characterize aspects of the internal structure of materials that are often correlated to dissipative e�ects. The178

evolution of internal variables captures indirectly the history of the deformation in the model approaches179

described herein. In contrast to external variables, which are measurable quantities and directly observable,180

the internal variables are hidden to an external observer. To solve Eqns. (4) and (5) applying the concept of181

internal variables is equal to solve the well-known evolution equation of the Maxwell material182

‡D + ÷

µ
‡̇D = 2÷Á̇D

. (6)

For more details on rheological models that characterize the Maxwell material behavior, see e.g. Altenbach183

(2012).184

Finite Deformation Model185

This section provides the main equations without their detailed derivation for a finite viscoelastic Maxwell186

model. An in-depth explanation of these equations and their development was given in Holzapfel (2001) or187

other textbooks on nonlinear continuum mechanics. Di�erent ways are possible to obtain evolution equations188

for viscoelastic materials valid for finite strains. In the following, the approach of a Maxwell material assuming189

small deformations is generalized to the case for finite viscoelasticity, developed in detail in Haupt (2000).190

A distinction between di�erent configurations is necessary to consider finite deformations in continuum191
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the following, all equations are first described for the small deformation model before these equations are142

extended to finite deformations.143

Small Deformation Model144

Kinematics specify the relation between motion and deformation. In the small deformation model, the145

linearized strain tensor Á reduces to the symmetric part of the displacement gradient146

Á = 1
2

1
Òu + ÒT u

2
(2)

with the displacement vector u = (u, v, w)T .147

So far Eqns. (1) and (2) are valid for all materials. The additionally required material laws are determined by148

individual properties, which involve that di�erent materials react di�erently to identical external conditions.149

The material equations result from mathematical models that express the characteristic features of the150

material behavior in an idealized way. Hence, material laws are either mathematically generalized (axiomatic)151

relations or based on experimental data (empirical). The material properties are often defined based on an152

additive decomposition of the stress and the strain tensor into a volumetric and a deviatoric part, the latter153

is denoted by (·)D = (·) ≠ 1
3tr (·)I with the trace tr (·). In fluid dynamics, the thermodynamic pressure p is154

usually introduced as an additional unknown. The equation ‡ = ≠pI+‡D is solved with the balance equation155

of mass as the additional equation to identify incompressibility. However, such a viscous laminar flow model156

is not straightforwardly extendible to viscoelasticity and hence cannot reflect the short-term elastic behavior157

of ice. To overcome this problem, a common assumption mostly used for compressible materials is applied158

in this work. Volume changes are reversible and volumetric relations are conventionally defined regarding159

equilibrium states. An approximation using an elastic isometric stress instead of the thermodynamic pressure160

is assumed (Darby, 1976)161

‡ =
3

⁄ + 2
3µ

4

¸ ˚˙ ˝
=K

tr (Á)I + ‡D (3)

with the two Lamé constants ⁄ = E‹/ [(1 + ‹)(1 ≠ 2‹)] and µ = E/ [2(1 + ‹)]. Young’s modulus E and162

Poisson’s ratio ‹ denote the two elastic constants of an isotropic, homogeneous material. The constitutive163

equation of a viscous material formulated with the pressure p yields the same results considering small164

deformation, see Christmann et al. (2016b), as well as finite deformation, see Christmann (2017). The bulk165

modulus K describes the resistance of the material to uniform compression. A constant bulk modulus means166

purely elastic properties of the volumetric stress tensor, which is thus independent of the applied material167
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Sto�gesetze

‡ = 1
3 tr (‡)I + ‡D = E

3(1≠2‹) tr (Á)I + ‡D Á = 1
3 tr (Á)I + ÁD

linear elastic (e):
E� �

‡D = 2µÁD = E
1+‹ ÁD

viscous (v):
⌘

� �

‡D = 2÷Á̇D

viscoelastic

Kelvin-Voigt:

E

⌘

� �

ÁD = ÁD
e

= ÁD
v

‡D = 2µÁD + 2÷Á̇D

Maxwell:

E
⌘

� �

ÁD = ÁD
e

+ ÁD
v

‡D = 2µÁD
e

= 2÷Á̇D
v

material parameter:

E = 1 GPa to

E = 10 GPa

‹ = 0.325 or

‹ = 0.5
÷ = 1014

Pa s to

÷ = 1016
Pa s
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Setting of Flow Line Model
10

72
 m

136.5 km

• viscoelastic full Stokes model
• finite element software COMSOL
• triangular mesh with 500 m resolution, 

refined to 100 m at the base and 1m at the ice front

• observed vertical displacements of 
GPS 13 prescribed as ocean tidal forcing



Results: Vertical Displacement 

• pure tidal signal on the ice shelf 
• effect of bending reduces modeled vertical displacements 

very similar to observed displacements in the hinge zone
• no tidal signal measured for grounded ice (smaller than noise), 

small tidal signal in model (~ 0.01m)

9

Note the varying y-axis!
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Horizontal Displacement (grounded ice, model)

• amplitude decreases with increasing distance to grounding line
• phase shift increases with distance



phase shift bending

Modelled Horizontal Amplitude (semidiurnal) 

(m
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Modelling and observations by GPS measurements show for

vertical displacements:
• bending effects through reduced vertical displacements in the hinge zone

downstream from the grounding line
(measurements and model agree very well)

• no tidal signal measured for grounded ice (smaller than noise),  small tidal 
signal in model (~ 0.01m)

horizontal displacements grounded ice:
• amplitude decreases with increasing distance to grounding line
• the phase shift increases with distance to grounding line 

(no phase shift for a purely viscous material model)

horizontal displacements floating ice:
• amplitude increases towards the ice shelf front, no pinning point in the model

Summary and Conclusions


