



# Multi-scale numerical modelling of debris flow: coupling 2D and 3D simulation strategies

A. Pasqua\*, A. Leonardi, M. Pirulli

\*andrea.pasqua@polito.it







### Flow chart of the research



- Very **fast** phenomena;
- impossible evacuation;
- Cause of economic and human loss.

### Modelling tools

- RASH3D (shallow-water method);
- Hybird (3D method);
- Less expensive than full scale experiment;
- Computational power almost satisfying.

 Velocity and pressure approximated to the mean (RASH3D);

Issues

 Large computational time necessary for big area simulated (Hybird).

### Coupling

- Enhancement of time calculation;
- Reliable results;
- Fewer data to process;
- Fewer results to interpret.







# Question: why do we need to understand and model debris flow phenomena? Answer: see next slide







### Motivations





- (a) The location of non-seismically triggered fatal landslide events from 2004 to 2016. Individual landslide events shown by a black dot. \*
- (b) (b) Number of non-seismically triggered fatal landslide events from 2004 to 2016 by country. \*
- (c) (c) The gross national income per capita (USD) by country (World Bank, 2018a), and the location of major urban centres globally (ESRI, 2018).\*
- \* All the images in this slides are from: Froude & Petley (2018) Natural Hazards and Earth System Sciences, 18(8), 2161–2181.







# Question: what kind of approach are suitable for this phenomena? Answer: see next slide





### Modelling tools





### de Saint-Venant equations;

### Hybird (3D model)



Lattice-Boltzmann equations



**Mesoscopic** method;



**Finite volume** method (FVM);



**Collision and** streaming processes;









# Question: what are the limits and the issues of these approaches? Answer: see next slide





### Limits and issues





Andrea Pasqua, Alessandro Leonardi, Marina Pirulli







Question: How can we improve the analysis? How can we have even more suitable results (in relation to informatics and graphic devices) **Answer**: Coupling















### Coupling





Imagine from Ming-liang Chen et al (2019), Contribution of Excessive Supply of Solid Material to a Runoff-Generated Debris Flow during Its Routing Along a Gully and Its Impact on the Downstream Village with Blockage Effects, MDPI

The image shows the main idea. In order to **save computational time** is useful to use an **integrated model** where it is **not necessary** to collect a large amount of information. Otherwise, if the flow is close to **strategic points**, it is necessary to have **more information** (velocity, forces, etc..) to **design** correctly the defence structures.



# Focus on Lattice-Boltzmann method



Ŧ

BY



# Focus on Lattice-Boltzmann method

Update Macroscopic & Equilibrium





Glasgow, UK

Tuesday, 05 May, 14:00-15:45

Andrea Pasqua, Alessandro Leonardi, Marina Pirulli













- Laminar flow (Poiseuille)
- Procedure for a **Newtonian** fluid to obtain analytical solutions:









- Laminar flow (Poiseuille)
- Procedure for a **Bagnold** fluid to obtain analytical solutions:









In this presentation are studied two different **problems** which are particularly interesting for **fluid dynamics**. Both of them are studied using the coupled method (constant velocity inlet)









# Channel







**Constant inlet velocity** 

- Newtonian rheology;
- BCs: Zou-He velocity inlet & outlet;
- fluid characteristics specified (see table);

#### **O Parabolic Inlet profile**

| Lc [m]             | 5.00 | Velocity inlet [m/s]        | 0.50    |
|--------------------|------|-----------------------------|---------|
| Hc [m]             | 2.00 | Velocity outlet<br>[m/s]    | 0.50    |
| Fluid Min X [m]    | 0.00 | Force X [m/s <sup>2</sup> ] | 3.35    |
| Fluid Max X<br>[m] | 5.00 | Force Z [m/s <sup>2</sup> ] | -9.21   |
| Fluid Min Z [m]    | 0.00 | ρ [kg/m³]                   | 1500.00 |
| Fluid Max Z [m]    | 1.00 | μ [Pas]                     | 60.00   |









| Analytic sc    | olutions | Numeric solutions |      |  |
|----------------|----------|-------------------|------|--|
| uMax [m/s]     | 0.50     | uMax [m/s]        | 0.53 |  |
| uMean<br>[m/s] | 0.33     | uMean [m/s]       | 0.35 |  |
| Fr [-]         | 0.1      | Fr [-]            | 0.1  |  |
| Re [-]         | 8.3      | Re [-]            | 8.8  |  |



#### **Numerical results**

#### Velocity

Pressure





5.331e-01 0.39985

0.26657

0.13328

0.000e+00





- Variable flow (height changes during the simulation)
  - Depending on the course of the free surface, the velocity and pressure values adapt satisfactorily to the new configuration.
  - $\,\circ\,$  the system may be approximate to a Poiseuille flow.







In the next slide you will able to observe how the free surface and velocity evolve during the simulation;

- The mass is represented on the left
- The **velocity** is represented on the **right**





### Mass

#### Velocity





#### Aprile 2020

Ing. Andrea Pasqua, PhD student Politecnico di Torino







# Dam break















Comparison of analytical with numerical solutions for a Newtonian fluid (increase in flow rate and constant slope)







### Problem Newtonian fluid • Dam break Characteristics of the fluid: • flow's height (h) in inlet 0.50 m • Dynamic viscosity 60.00 Pas • Density 1500.00 kg/m<sup>3</sup> • Constant flow rate Problems analysed: Increasing in slope Constant flow rate







Comparison of analytical with numerical solutions for a Newtonian fluid (increase in slope and constant flow rate)







# Preliminary results (Bagnold fluid)









BY

### Preliminary results (Bagnold fluid)

Comparison of analytical with numerical solutions for a Bagnold fluid (increase in flow rate and constant slope)







# Preliminary results (Bagnold fluid)









### Preliminary results (Bagnold fluid)

Comparison of analytical with numerical solutions for a Bagnold fluid (increase in slope and constant flow rate)





### Contacts





Andrea Pasqua Ph.D. Student, Dept. of Structural, Building and Geotechnical Engineering Politecnico di Torino Corso Duca degli Abruzzi 24,

10124 Torino (Italy) Mail andrea.pasqua@polito.it

Tel. +390110904914



### POLITECNICO DI TORINO

 $(\mathbf{i})$ 

BY

