

Microbial abundance and transport in glacial near-surface meltwater

IAN STEVENS*1,2

TRISTRAM IRVINE-FYNN², ARWYN EDWARDS³, PHILIP PORTER⁴, JOSEPH COOK³, TOM HOLT², BRIAN MOORMAN⁵, ANDY HODSON⁶, AND ANDREW MITCHELL²

* ian.stevens@newcastle.ac.uk

🖊 @theianstevens

¹ Newcastle University, UK; ² DGES, Aberystwyth University, UK; ³ IBERS, Aberystwyth University, UK; ⁴ University of Hertfordshire, UK; ⁵University of Calgary, CA; ⁶ UNIS, Svalbard

Acknowledgements

Canada

Canada

Background

- •Near-surface ice melts internally due to SWR penetration
- Preferential melt along ice crystal boundaries
- SWR penetration is depth limited
- \bullet Reduction of bulk density and enhancement of primary porosity of ice $<0.4~{\rm m}$ deep
- Meltwater fills pore space in upper 0.4 m
 - A non-weathered ice aquiclude prevents further downward movement of water
- Perched aquifer ➤ "weathering crust"
- Pathway for meltwater into supraglacial stream network

Background

- Light + water makes the WC a "photic zone"
- Multitude of microbial habitats
 - Cryoconite most well known
 - Also planktonic and ice bound
- Active microbial communities with auto- and heterotrophs
 - Eukaryotes, prokaryotes and viruses
- $\leq 10^5$ cells mL⁻¹; c. 10^{25-29} globally
 - Similar to pedosphere (10²⁹)

Rationale and aim

•Current glacial microbial enumeration estimates are based on a limited number of samples when compared with other ecosystems

•Limited understanding of controls on planktonic cell concentrations

•Unconsidered reservoir of carbon

•Links with bioalbedo of ice surfaces

•AIM: enumerate microbes in weathering crust waters across the Northern hemisphere and explore potential hydrological controls on community numbers

Methods: Field sites

- 10 glaciers in 6 countries including a range of geographic locations, latitudes and climatic settings
- •2014 2016 ablation seasons

Methods: Data collection

- •WC hydraulic conductivity (k) recorded via bail-recharge of auger holes (see Stevens et al., 2018 Hydro. Proc.)
- •Stream discharge via salt dilution at PBSV, FFSV, FGBI, SGSE, HACH and VFCH
- •Electrical conductivity and temperature of WC water at PBSV, HACH and VFCH
- Paired collection of water samples for microbial enumeration using sterile 15 mL centrifuge tubes and pre-contaminated equipment
- •Samples fixed with 2 % w/v paraformaldehyde (VFCH) or glutaraldehyde (others), kept in the dark and frozen within 8 hours of collection
 - Stored at -80 °C within three weeks of collection until analysis

Methods: Microbial enumeration

- Flow Cytometry (FCM) using a Sony SH800-EC
- Samples defrosted overnight
- Stained using SYBR Gold DNA stain
- Comparison of stained/unstained sample pairs
 - Quality control to ensure that cells and sediment are not "clumped"
 - Stained material = cells
- "Beads" of a known size used to estimate cell sizes

FCM Protocol

a.

Ь.

V-256 104

10⁰ 10¹

Gating procedure. Panel a shows the quality control process, clumped events fall outside the green area. A sample such as this would be disaggregated and reanalyzed. Panels b and c show an unstained and stained sample pair, the events (points) which shift right on the FITC axis are material stained with SYBR Gold and presumed to be microbial cells.

Methods: Carbon flux calculations

•Bacterial sizes converted to biovolume

- Assumed cells are rod shaped: cylindrical with semi-hemispheric ends
- Mid-point of size class used as length
- Standard geometries (relative to length) to calculate diameter and volume
- •Biovolume > C using a conversion factor
 - 5.6 \times 10⁻¹³ g C μm^{-3} (Bratbak, 1985)
- •Runoff estimates under RCP 4.5 to 2099 from Bliss et al. (2014)
- •Underlying assumptions that runoff:
 - Originates on the surface
 - Transports all entrained microbes to the pro-glacial fluvial/marine system

Results: Hydraulic conductivity

Median K = $2.8 \times 10^{-2} \text{ m d}^{-1}$ (n = 443)

Results: Microbial enumeration

Mean microbial abundance = 2.2×10^4 cells mL⁻¹ (n = 895)

Results: Microbe size

Results: hydrology as a control on cells – weathering crust

13

Results: hydrology as a control on cells – streams

Results: Carbon export from supraglacial meltwater

Region	2003 – 2022 (kg a ⁻¹)	2041 – 2060 (kg a ⁻¹)	2080 – 2099 (kg a ⁻¹)	2003 – 2099 (kg a ⁻¹)
Svalbard	4.8 × 10 ⁷	6.1 × 10 ⁷	4.3 × 10 ⁷	5.2 × 10 ⁷
Arctic Canada (N)	9.8 × 10 ⁷	1.3×10^{8}	1.3×10^{8}	1.2×10^{8}
Greenland	1.6×10^{8}	1.7×10^{8}	1.6×10^{8}	1.7×10^{8}
Scandinavia	4.1 × 10 ⁶	3.0 × 10 ⁶	1.5 × 10 ⁶	3.0×10^{6}
Central EU	2.7 × 10 ⁶	1.5 × 10 ⁶	8.9 × 10 ⁵	1.8×10^{6}
Total	$3.7 imes 10^8$	3.7×10^{8}	3.7 × 10 ⁸	3.4 × 10 ⁸
Global Total	1.2 × 10 ⁹	1.2 × 10 ⁹	9.9 × 10 ⁸	1.1 × 10 ⁹

Regions are split as follows: Svalbard: FFSV, PBSV; Arctic Canada: FGBI; Scandinavia: SGSE; Greenland: GRDS, GRKM; Central EU: GBOS, HACH, RMOS, VFCH.

Regions sampled represent \approx 30 % of modelled global glacier runoff over the next century, which is upscaled to provide the global total. Reduction in C export from the 2003-2022 period to the 2080-2099 period is solely a function of discharge reduction as glaciers retreat.

Cell numbers and size

•Lower-end estimate of supraglacial microbes as only those in meltwater sampled

•Mean concentrations align with those in other studies

- Fall within the range found in terrestrial groundwater aquifers $(10^2 10^8 \text{ cells mL}^{-1})$
- Similar range to snow (< 10⁵ cells mL⁻¹)

•Significant pairwise differences between GRDS and all European Alpine glaciers (Tukey's HSD post-hoc of one-way ANOVA; p < 0.05)

- What controls this?
- •Modal cell size class of $1 2 \mu m$ (slide 12)
 - Larger than size suggested by Irvine-Fynn et al. (2012)
 - Cells > 15 μ m observed could be some remaining aggregates, but could be indicative of eukaryotic cells (note that no phylogenetic data are available)

Implications for WC hydraulics

•No correlation between K or Q and microbial concentration (slides 13/14)

•No significant difference in microbial concentration in WC or streams (slide 10)

- Implication that cells are advected efficiently once mobilized, not filtered by WC
- So why does WC darken/accumulate biomass through the ablation season?
- Possible that removal via filtering (and viral action) = addition from replication/liberation from melting ice?
- •Presence of particles > 15 μm in meltwater implies pores of at least this diameter are present in the WC
 - Also contrasts with the idea of mechanical filtration; even large cells mobilised

Supraglacial contribution to C flux

•Upscaling exercise strongly controlled by runoff estimates

- Designed to highlight potential role of glacier surfaces in C cycles
- Uncertainties in runoff estimates incorporated
- No consideration of surface cover changes e.g. increasing debris cover with ablation
- Excludes cells bound to ice which may be released during WC degradation events

•Implied liberation of 10^9 kg C a⁻¹ as POC over next century (slide 15)

• \approx 0.08 % of aquatic biosphere

•44.6% of water and therefore C flux is from mass loss rather than annual cycles; implies the liberation of "locked-up" C from within ice

Summary

•Median WC K of 2.8×10^{-2} m d⁻¹ (similar to a sandstone)

•Mean microbial concentration of 2.2×10^4 cells mL⁻¹ in surface meltwater

• Highest in Greenland, lowest in European Alps

•No evidence for mechanical filtration by the WC

- Particles $> 15 \ \mu m$ mobilised
- •10⁹ kg C a⁻¹ released downstream from glacier surfaces to fluvial/marine environments

•However, lots of questions unanswered...

Future Work

•Explore other potential controls on microbe concentration:

- Nutrient input and bioavailability?
- Cell replication and viral control rates?
- "Age" of the weathering crust?
- •Darkening of the surface throughout the melt season
 - Role of ice-bound microbiota?
 - Tracer studies to determine flow paths: throughflow or microbe "input" = "output"?

