Spatio-temporal missing data reconstruction in satellite displacement measurement time series

Alexandre Hippert-Ferrer1†, Yajing Yan1, Philippe Bolon1, Romain Millan2

1Laboratoire d'Informatique, Systèmes, Traitement de l'Information et la Connaissance (LISTIC), Annecy, France
2Institut des Géosciences de l'Environnement (IGE), Université Grenoble Alpes, CNRS, Grenoble, France

† Correspondence to: alexandre.hippert-ferrer@univ-smb.fr

Thursday, May 7
Introduction

- **Missing data** is a frequent issue in displacement time series in both space and time.
- It can prevent the full understanding of the **physical phenomena** under observation.
- **Causes**: rapid surface changes, missing image, technical limitations.

Argentière glacier, offset tracking of TerraSAR-X in Summer 2010 (Fallourd et al., 2011)

Surface velocity over Fox Glacier, offset tracking of Sentinel-2 images in February 2018 (Millan et al., 2019)

Slow slip event (interferometry), Mexico (Maubant et al., 2020)
Motivation of the study

Handling missing data in displacement time series

- Classical approach: spatial or temporal interpolation
- Not exploited (yet): spatio-temporal information

→ Manage spatio-temporal missing data in time series ←

Objective: propose a statistical gap-filling method addressing

1. Randomness and possible spatial, temporal and spatio-temporal correlation of
 - Noise
 - Missing data

2. Complex displacement behaviors (mixed frequencies)

3. Small time series
→ Extension of the EM-EOF method (Hippert et al., 2019, 2020) [3, 4]

Key features of the extended EM-EOF method:

- Low rank structure of the sample spatio-temporal covariance matrix.
- Displacement signal and noise decomposed in empirical orthogonal functions (EOFs).
- Reconstruction with an appropriate initialization of missing values.
- Expectation-Maximization (EM)-type algorithm for resolution.
Data representation

- Let $X_t = \{x_{ij}(t)\}_{1 \leq i \leq P_x, 1 \leq j \leq P_y}$ be a spatial grid observed at time $t = 1, \ldots, N$.
- Some elements of X_t are missing.
- All X_t are stacked into a spatio-temporal data matrix $Y = (X_1, X_2, \ldots, X_N)$.

Square window of size $M_x \times M_y = M$

- Each X_t is augmented into a Hankel-block Hankel (HbH) matrix D_t of size $K \times M = K_x K_y \times M_x M_y$, with $K_x = (P_x - M_x + 1)$, $K_y = (P_y - M_y + 1)$.
- All D_t is stacked into a spatio-temporal matrix D of size $(K \times NM)$, that is $D = (D_1, D_2, \ldots, D_N)$.
Covariance estimation and decomposition

- Sample spatio-temporal covariance is estimated:
 \[\hat{C} = \frac{1}{K} \mathcal{D}^T \mathcal{D} \]
 (1)

- The eigenvalue decomposition (EVD) of matrix \(\hat{C} \) yields to:
 \[\hat{C} \text{ EVD} = \sum_{i=1}^{NM} \lambda_i u_i u_i^T \]
 (2)

Vectors \(u_i \) are the \(NM \) EOFs modes of matrix \(\mathcal{D} \). First modes capture the main spatio-temporal dynamical behavior of the signal, others represent perturbations.

- Reconstruction with an optimal number of EOF modes \(R \ll NM \) is obtained as
 \[\hat{\mathcal{D}} = A_R U_R \]
 (3)

\(A \) is the matrix of principal components, which are the projection of \(\mathcal{D} \) on each EEOF \(u \).

How do we find \(R \)?
Selection of the optimal number of EOF modes

1. Root-mean-square error (cross-RMSE) on cross-validated data \(\mathcal{Y} \in \mathcal{Y} \):

\[
\frac{1}{MN} \| \hat{\mathcal{Y}}_k - \mathcal{Y} \|_2
\]

- Requires no a priori information

2. Confidence index associated with each eigenvalue of \(\mathcal{D} \):

\[
C_k = \frac{\max(\Gamma_k) - \Gamma_k}{\max(\Gamma_k) - \min(\Gamma_k)} \quad k = 1, \ldots, NM
\]

with \(\Gamma_k = \log \left(\frac{\Delta \lambda_k}{\lambda_j - \lambda_k} \right) \).

- Investigation of eigenvalue degeneracy, which is linked to their uncertainties \(\frac{\Delta \lambda_k}{\lambda_j - \lambda_k} \).
- Over-estimation of EOF modes is addressed by building metric \(C_k \).
General principle of the method

Initialize missing values → First estimation of the optimal number of EOF R

Update missing values → Reconstruction with $r \leq R$ EOFs

Update r → Compute C_k

EM iteration*

* For a fixed number of EOF modes, cross-RMSE is computed until it converges.
Trade-off between the amount of information extracted in the window (large M) and the number of repetitions of the window within each image (small M).

Upper limit based on covariance estimation theory: $M < P/6$

Lower limit:

We use the spatial decorrelation decay τ defined as:

$$\tau = -\frac{\Delta P}{\log r}$$

(6)

r : lag-one auto-correlation

ΔP : spatial sampling rate, here 1 pixel.

M can be approximated by $M \approx P/\tau$ (Ghil et al., 2002) [1] which gives $M > P/20$ with $r < 0.95$.
Surface velocities on Fox Glacier, New Zealand

<table>
<thead>
<tr>
<th>Period</th>
<th>Platform</th>
<th>Data type</th>
<th>Time series size</th>
<th>[min, max]% missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/2018-09/2018</td>
<td>Sentinel-2</td>
<td>Offset tracking</td>
<td>12</td>
<td>[10, 60]%</td>
</tr>
</tbody>
</table>

Time series description.

- Surface velocities computed from the study of (Millan et al., 2019) [5].

Surface velocities (m/year) on Fox Glacier. P1 and P2 locations are selected for temporal evolution analysis.
13 EOFs modes; $M=225$; cross-validation data: 1% of observed values.

- Seasonal variation is retrieved, consistent values with the literature (4.5 m/day below the main ice fall in winter).

- Improved accuracy of ≈ 15 m/year compared to the EM-EOF method.
Optimal number of EOF modes (13) corresponds to a peak in C_k which coincides with a break in the eigenvalue spectrum.

Eigenvalues multiplets are kept in the reconstructed data.

$$C_k = \frac{\max(\Gamma_k) - \Gamma_k}{\max(\Gamma_k) - \min(\Gamma_k)}$$

$$\Gamma_k = \log\left(\frac{\Delta \lambda_k}{\lambda_j - \lambda_k}\right)$$
Conclusion

- **Extension** of the EM-EOF method to impute spatio-temporal missing values.
 - Can handle small time series with high incompleteness
 - Extraction of the displacement signal from heterogeneous perturbations (noise)

- **Robust selection of the optimal number of EOF modes** based on:
 - Iterative computation of the cross-validation error
 - Confidence metric based on eigenvalue uncertainties to address potential over-estimation due to eigenvalue degeneracy

- A range of spatial lag M is provided

- Limitations: potential edge effect due to spatial square window.

Perspective: Use a shaped window (adaptive spatial lag) instead of a square window.
Thank you for your attention.

This work has been supported by the Programme National de Télédétection Spatiale (PNTS, http://www.insu.cnrs.fr/pnts), grant PNTS-2019-11, and by the SIRGA project.
Diagonal averaging, called *hankelization*, [2] is applied successively to each matrix $H_{i,t}$ and to each matrix D_t, so that we have the following averaging:

$$x_{ik}(t) = \frac{1}{\#A_k} \sum_{(l,l') \in A_k} x_{ll'}(t)$$ \hspace{1cm} (7)$$

$$H_{k,t} = \frac{1}{\#B_k} \sum_{(l,l') \in B_k} H_{ll',t}$$ \hspace{1cm} (8)$$

with $A_k = \{(l,l') : 1 \leq l \leq K_y, 1 \leq l' \leq M_y, l + l' = k + 1\}$ and $B_k = \{(l,l') : 1 \leq l \leq K_x, 1 \leq l' \leq M_x, l + l' = k + 1\}$.

Reconstruction averaging
Confidence index and effective sample size

North's et al. "rule of thumb" (North, 1982) to approximate the eigenvalue uncertainty:

\[\Delta \lambda_k \approx \sqrt{\frac{2}{L^* \lambda_k}} \quad \Delta u_k \approx \frac{\Delta \lambda_k}{\lambda_j - \lambda_k} u_j \]

(9)

with \(L^* = N^* M^* \).

- \(N^* = N \left[1 + 2 \sum_{k=1}^{N-1} \left(1 - \frac{k}{N}\right) \rho(k) \right]^{-1} \) is the temporal ESS (Thiébaux, 1984)
- \(M^* \) is the spatial ESS within each spatial window of size \(M \). We estimate it by:

\[M^* = M \left(1 + 2 \sum_{k=1}^{M} \left(1 - \frac{k}{M}\right) \nu(k) \right)^{-1} \]

(10)

Then \(\Gamma_k = \log \left(\frac{\Delta \lambda_k}{\lambda_j - \lambda_k} \right) \) and \(C_k \) is computed as:

\[C_k = \frac{\max(\Gamma_k) - \Gamma_k}{\max(\Gamma_k) - \min(\Gamma_k)} \quad k = 1, \ldots, NM \]

(11)