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Artificial neural network
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The brain is the concentrated on intelligent development in
the biological world, and the biological nervous system is
composed of myriad cells and tissues with a high degree of
organization .

The basic unit of a biological neural network includes two
parts: a cell body and extensions




BP neural network structure
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BP neural network transfer functions
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BP neural network parameters
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Error analysis of BP neural network

Error function:
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the results in the homogeneous half space
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the results 1in 1D medium
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the results 1n 3D medium
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Parameters of geoelectrics and flying

Transmitter parameters Receiver parameters
T wo5E | WeEhen | T e Electrical parameters of rocks and ores in Qinling area
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Image of
all-time
apparent
resistivity
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The results of calculating
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The quasi-resistivity calculated by BP
neural networks slightly larger than
the results from the all-time apparent
resistivity algorithm, which is
consistent with the imaging results of
the theoretical model. Similarly, the
quasi-resistivity isocline from the BP
neural network has several mutation
bands, which are also caused by the
uniform half-space model of the

training sample set.



@ Theory
& Theoretical model testing

@ Ficld data example

& Conclusion



1) A BP neural network was combined with airborne TEM; the results show that it
was very effective for predicting subsurface geological structures.

2) The 1maging results of the theoretical model show that the BP neural network
method a better approximates the low-resistivity layer and is closer to the resistivity
of the real model.

3) The data from a typical forest-covered area in Qinlin area were processed and
interpreted.

4) The applicability and effectiveness of an artificial neural network algorithm in
solving airborne TEM problems are verified.



Thank you

for your attention!



