Siberian Arctic inland waters emit mostly contemporary carbon
East Siberian Arctic lowlands

- Inland water carbon concentrations, emissions to the atmosphere, and isotopic composition measured

- Arctic peat tundra in Yedoma region (loess deposited carbon that can be >50,000 years old)

- Radiocarbon (14C) used on DOC, POC, CO$_2$ and CH$_4$ to determine contemporary vs. pre-aged carbon
Carbon = mostly contemporary

- Age gradient from modern (post-1950 CE) to ancient (29,355 ± 2967 yBP)
 ponds > fluvial > small lake > thermokarst lake > Yedoma meltwater (youngest > oldest)

- All 14C forms correlated
 CO$_2$ and CH$_4$ generally younger than DOC and POC
 Higher carbon concentrations tended to be younger
CO₂ and CH₄ emissions

- Modelled contributions of soil carbon sources show contemporary sources dominate (modern to basal peat)

- **Study landscape a net carbon sink** (Aug 2016)
 - -876.9 ± 136.4 Mg C
 - Contemporary inland waters = 17.0 ± 10.9 Mg C
 - Pre-aged inland waters = 3.5 ± 2.3 Mg C

Inland water carbon emissions more sensitive to changes in contemporary carbon turnover than release of pre-aged carbon
Want to read further?

• **Manuscript**
 https://doi.org/10.1038/s41467-020-15511-6

• **Twitter thread**
 @JoshuaFDean
 https://twitter.com/JoshuaFDean/status/1245711926010806273

• **Article on “The Conversation”**
 Arctic climate change – it’s recent carbon emissions we should fear, not ancient methane ‘time bombs’