Impact of the statistical method, training dataset, and spatial scale of post-processing to adjust ensemble forecasts of the height of new snow

Jari-Pekka Nousu1,2, Matthieu Lafaysse1, Guillaume Evin3, Matthieu Vernay1, Joseph Bellier4,5, Bruno Joly6, Maxime Taillardat6,7, Mickaël Zamo6,7

1 Univ. Grenoble Alpes – Université de Toulouse – Météo-France – CNRS – CNRM, Centre d’Etudes de la Neige, Grenoble, France ; 2 University of Oulu, Finland ; 3 Univ. Grenoble Alpes – INRAE, UR ETNA, Grenoble, France ; 4 NOAA Earth System Research Lab., Boulder, USA ; 5 Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France ; 6 CNRM – Université de Toulouse – Météo-France – CNRS, GMAP, Toulouse, France, 7 Météo-France, DirOP/COMPAS, Toulouse, France
Context

- Forecasting the height of new snow:
 - Safety and economic concerns

- Meteo-France **automatic forecasts** currently available (website and smartphone apps):

\[
24\text{h height of new snow} = \sum_{24\text{h}} \text{Hourly NWP precipitation} \times \text{Density} = f(\text{temperature}) \text{ (empirical law)}
\]

- Compaction during snowfall
- Possible melting
- Rain on snow

→ Severe biases
SAFRAN:
• Spatial aggregation of ARPEGE on massifs (~1000 km²)
• Adjust meteorological variables at various elevations

Crocus:
• Falling snow density = f(temperature, wind speed)
• Explicit mechanical compaction
• Melting (energy balance)
• Compaction due to liquid water (rain on snow)

Vionnet et al., 2012

Durand et al., 1998

Alternative: Physical modelling SAFRAN-Crocus
Ensemble forecasts PEARP-S2M

PEARP

SAFRAN

Crocus

35 members

PEARP

SAFRAN

Crocus

4-day forecast, Mercantour region, 2100 m elevation

Vernay et al. 2015

Experimental from 2014
Operational: October 2019

Snow depth (cm)

26/02 12h 27/02 00h 27/02 12h 28/02 00h 28/02 12h 29/02 00h 29/02 12h 01/03 00h
Raw ensemble forecasts PEARP-S2M

Evaluation over all massifs Winter 2017-2018

Rank diagram

Quantile-Quantile plot

Underdispersion!

Bias!
State of the art

- Physical ensemble modelling of the snowpack improves the forecast of the height of new snow compared to:
 - Direct NWP outputs (Champavier et al., 2018)
 - Deterministic systems (Vernay et al., 2015)

- Ensemble Model Output Statistics (EMOS) are useful to forecast the height of new snow from direct ensemble NWP outputs (precipitation and temperature) (Stauffer et al., 2018; Scheuerer and Hamill, 2019)

- Quantile Regression Forests (QRF) can incorporate more predictors and have added value for precipitation forecasts (Taillardat et al., 2019)

Questions

- Can Ensemble Model Output Statistics (EMOS) improve the forecasts from physical modelling?
 - What is the best training dataset?
 - What is the spatial validity of the post-processing?
- Can Quantile Regression Forests (QRF) improve the skill compared to EMOS?
Statistical post-processing: method

- In Nousu et al., NPG, 2019, we apply the EMOS method used by Scheuerer and Hamill (2015; 2018) for precipitation forecasts:
 - We assume that the conditional distribution of the forecast HN to the raw ensemble forecasts follow a Censored Shifted Gamma (CSG) defined by 3 parameters: **Mean** μ; **Variance** σ^2; **Shift** δ.

 ![Density Histogram with PDFs](image)

 - Regression model between CSG parameters and synthetic properties of the raw ensemble (mean, dispersion, probability of 0 cm)
Statistical post-processing: calibration

Predictand:
Network of local observations of the 24h height of new snow

2 Predictor datasets: Ensemble forecasts PEARP-S2M

<table>
<thead>
<tr>
<th>Period</th>
<th>Members</th>
<th>Initial conditions</th>
<th>Resolution and physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reforecast</td>
<td>1994-2016</td>
<td>10</td>
<td>Unperturbed</td>
</tr>
<tr>
<td>Real-time forecasts</td>
<td>2014-2017</td>
<td>35</td>
<td>Perturbed</td>
</tr>
</tbody>
</table>

Spatial scale of the calibration:
- Massif scale
- Station scale

Evaluations:
- From real-time forecasts, winter 2017-2018
EMOS: results

Nousu et al., NPG, 2019

Raw forecasts

- Remove bias and underdispersion
- Improvement of CRPS on most stations.
- Larger improvement at short lead times

Corrected forecasts

Training: reforecasts 1994-2016
Evaluation: real-time forecasts 2017-2018
Sensitivity to training dataset
Nousu et al., NPG, 2019

Training: reforecasts 1994-2016
Evaluation: real-time forecasts 2017-2018

Training: real-time forecasts 2014-2017
Evaluation: real-time forecasts 2017-2018

Severe events less reliable
Low events more reliable

CRPSS (Reference: raw forecasts)

Pros and cons on both sides

Better skill at the longest lead time
Sensitivity to spatial scale
Nousu et al., NPG, 2019

Training: local scale
Evaluation: local scale

Training: massif scale
Evaluation: local scale

Similar skill for all criteria
Limitation of EMOS:
- When all raw members expect 0 cm of snow but some rainfall, EMOS always forecast 0 cm (it does not account for potential errors in the rain-snow limit elevation).

QRF has been tested with a large set of variables as predictors:
- It is shown that rainfall amount and temperature are useful predictors to be associated with the simulated new snow depth, especially at the longest lead times.

Added value of Quantile Regression Forests (QRF)

Evin et al., in prep.

Weight in QRF

24 h
- Height of 24h new snow
- Solid precip. amount
- Other meteorological predictors

96 h
- Height of 24h new snow
- Solid precip. amount
- Liquid precip. amount
- Air temperature and humidity
Added value of Quantile Regression Forests (QRF)

- The **statistical properties** of the post-processed are **satisfactory** in both cases (flat rank histograms for both EMOS and QRF)

- A significant improvement of CRPS is obtained with QRF in theoretical experiments based on the 22-year reforecast dataset (22* [21-year training, 1-year validation])
 → Better predictive power
Illustrations on specific cases (24h lead time forecasts):

- Raw forecasts = 0
- EMOS = 0
- Corrected with QRF

Observation:

- EMOS and QRF both correct the underdispersion and bias of raw forecasts
- On dry days, QRF provides a lower spread than EMOS
Conclusions

- Raw ensemble forecasts + snowpack modelling provide predictive but **biased and underdispersive** forecasts not well suited for **automated products**.

- **Ensemble Model Output Statistics (EMOS)** improve the forecasts from physical modelling.
 - What is the **best training dataset**?
 - *Long reforecasts* improve the **reliability** of the post-processed forecasts for the severe and unusual events
 - *But they should be more homogeneous* with the operational system (initial perturbations)
 - What is the spatial validity of the post-processing?
 - *Spatial consistence of biases* allows to apply corrections at the massif scale (1000 km²)

- **Quantile Regression Forecasts (QRF)**
 - Better predictive skill in theoretical experiments thanks to other predictors
 - Further work required to test the robustness when transferred to real time forecasts
References

More details for the EMOS results in our main reference:

Other references

