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Context

■ Forecasting the height of new snow:

― Safety and economic concerns

■ Meteo-France automatic forecasts currently available (website and smartphone apps) :

Hourly NWP precipitation
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grid

massifs

ARPEGE

SAFRAN : 
● Spatial aggregation of ARPEGE on massifs (~1000 km²)
● Adjust meteorological variables at various elevations

Crocus :
● Falling snow density = 

f(temperature, wind speed)
● Explicit mechanical 

compaction
● Melting (energy balance)
● Compaction due to liquid 

water (rain on snow)

Vionnet et al., 2012

Durand et al., 1998

Alternative : Physical modelling SAFRAN-Crocus
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Ensemble forecasts PEARP-S2M Experimental from 2014
Operational : october 2019

PEARP SAFRAN Crocus
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4-day forecast, Mercantour region, 2100 m elevation

Vernay et al. 2015
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Raw ensemble forecasts PEARP-S2M

Rank diagram Quantile-Quantile plot

Evaluation over all massifs
Winter 2017-2018

Underdispersion ! Bias !
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State of the art

Questions

■ Physical ensemble modelling of the snowpack improves the forecast of the height of new snow compared to:

- Direct NWP outputs (Champavier et al., 2018)

- Deterministic systems (Vernay et al., 2015)

■ Ensemble Model Output Statistics (EMOS) are useful to forecast the height of new snow from direct 
ensemble NWP outputs (precipitation and temperature)
(Stauffer et al., 2018 ; Scheuerer and Hamill, 2019)

■ Quantile Regression Forests (QRF) can incorporate more predictors and have added value for precipitation 
forecasts (Taillardat et al., 2019)

■ Can Ensemble Model Output Statistics (EMOS) improve the forecasts from physical modelling ?

― What is the best training dataset ?

― What is the spatial validity of the post-processing ?
■ Can Quantile Regression Forests (QRF) improve the skill compared to EMOS ?
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Statistical post-processing: method

CSG fits well
the climatological
PDF  of observations

■ In Nousu et al., NPG, 2019, we apply the EMOS method used by Scheuerer and Hamill 
(2015 ; 2018) for precipitation forecasts:

― We assume that the conditional distribution of the forecast HN to the raw ensemble 
forecasts follow a Censored Shifted Gamma (CSG) defined by 3 parameters :
Mean μ ; Variance σ² ; Shift δ .

― Regression model between CSG parameters and synthetic properties of the raw 
ensemble (mean, dispersion, probability of 0 cm) 
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Statistical post-processing: calibration

Predictand :
Network of local observations
of the 24h height of new snow

Evaluations :

- From real-time forecasts,
          winter 2017-2018        

Period Members Initial 
conditions

Resolution and 
physics

Reforecast 1994-2016 10 Unperturbed Homogeneous

Real-time 
forecasts

2014-2017 35 Perturbed Heterogeneous

2 Predictor datasets: Ensemble forecasts PEARP-S2M

Snow board

French Pyrenees

French
Alps

Observations Observations

Spatial scale of the calibration:
- Massif scale
- Station scale        

Nousu et al., NPG, 2019
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EMOS: results

Raw forecasts Corrected forecasts

- Remove bias and 
underdispersion
 
- Improvement of CRPS on 
most stations.

- Larger improvement at 
short lead times

Training:     reforecasts 1994-2016
Evaluation:      real-time forecasts
                                        2017-2018

Nousu et al., NPG, 2019

CRPSS (Reference : raw forecasts)
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Sensitivity to training dataset

Training:     real-time forecasts 2014-2017
Evaluation: real-time forecasts 2017-2018

Training:                  reforecasts 1994-2016
Evaluation: real-time forecasts 2017-2018

Severe events less reliable
Low events more reliable

Better skill at the longest lead time

Nousu et al., NPG, 2019

Pros and cons
on both sides CRPSS (Reference : raw forecasts)CRPSS (Reference : raw forecasts)
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Sensitivity to spatial scale

Training:     massif scale
Evaluation:    local scale

Training:     local scale
Evaluation: local scale

Similar skill
for all criteria

Nousu et al., NPG, 2019

CRPSS (Reference : raw forecasts)CRPSS (Reference : raw forecasts)



Page 12

Added value of Quantile Regression Forests (QRF)

■ Limitation of EMOS :

― When all raw members expect 0 cm of snow but some rainfall, EMOS always forecast 0 
cm (it does not account for potential errors in the rain-snow limit elevation)

■ QRF has been tested with a large set of variables as predictors

― It is shown that rainfall amount and temperature are useful predictors to be associated 
with the simulated new snow depth, especially at the longest lead times

Evin et al., in prep.

Height of
24h new snow

Liquid precip.
amount

Air
temperature
and humidty

Solid precip.
amount

Height of
24h new snow

Other meteorological
predictors

Solid precip.
amount

Wind

Weight
in QRF

Weight
in QRF
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Added value of Quantile Regression Forests (QRF)

■ The statistical properties of the post-processed are satisfactory in both cases
(flat rank histograms
for both EMOS and QRF)

■ A significant improvement of CRPS is obtained with QRF in theoretical experiments 
based on the 22-year reforecast dataset (22* [21-year training, 1-year validation] )
→ Better predictive power

Evin et al., in prep.
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Added value of Quantile Regression Forests (QRF)

■ Illustrations on specific cases (24h lead time forecasts):

Evin et al., in prep.

Raw forecasts = 0
EMOS = 0
corrected with QRF

EMOS and QRF both correct
the underdispersion and bias
of raw forecasts

Observation

On dry days, QRF provides
a lower spread than EMOS 
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Conclusions

■ Raw ensemble forecasts + snowpack modelling provide predictive but biased and 
underdispersive forecasts not well suited for automated products.

■ Ensemble Model Output Statistics (EMOS) improve the forecasts from physical modelling.

― What is the best training dataset ?

→ Long reforecasts improve the reliability of the post-processed forecasts for the severe and 
unusual events

→ But they should me more homogeneous with the operational system (initial perturbations)

― What is the spatial validity of the post-processing ?

→ Spatial consistence of biases allows to apply corrections at the massif scale (1000 km²)

■ Quantile Regression Forecasts (QRF)

― Better predictive skill in theoretical experiments thanks to other predictors

― Further work required to test the robustness when transfered to real time forecasts
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