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Eurasian ice sheet complex during the LGM

Hughes et al. 2016, DATED-1 project
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b LGM, around 21,000 yr BP:

Eurasian lce Sheet complex (20-24 m SLE)

e British-Irish Ice Sheet (~2 m SLE)

e Fennoscandian Ice Sheet (~15 m SLE)
e Barents Sea lce Sheet (~7 m SLE)
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Eurasian ice sheet complex: observations

Hughes et al. 2016, DATED-1 project
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ot | LGM, around 21,000 yr BP:
=~ Eurasian Ice Sheet complex (20-24 m SLE)

. (~2 m SLE)
. (~7 m SLE)

“" 4 DATED-1 archive, Hughes et al. 2015:

* time-slice reconstructions of EISc
between LGM and 10,000 yr BP;

* Collection of existing chronological data
(marine/terrestrial) till Jan. 1st, 2013

_ || The last Eurasian ice sheets — a chronological database and time-slice
|| reconstruction, DATED-1
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Barents Sea ice sheet: bathymnr

Barents Sea Ice Sheet:
e almost entirely marine-based;
e grounded on rel. shallow shelf;

e drained by several ice streams
flowing in glacial troughs;

 resting on retrograde bedrock:
potentially prone to MISI:
Marine Ice Sheet Instability

etry, ice dynamics

Source: NASA
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Barents Sea ice sheet: bathymetry, ice dynamics
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Main scientific question of this study

West Antarctic Ice Sheet: /\

e ~3.3 m SLE (Bamber et al. 2009); Observations limited to past decades:
e almost entirely marine-based:; need to understand processes on
glacial timescales (100/>1000 yrs)

 resting on retrograde bedrock:
MISI has been observed/simulated; v

Ocean melting under ice shelves: What is role played by ocean melting

e primary cause for WAIS mass loss; In driving the last deglaciation of the
Barents Sea Ice Sheet?

e trigger for dynamic instabilities

(MISI, loss of buttressing) v

lce sheet model simulations of the
last deglaciation of the
Barents Sea Ice Sheet,

taking into account ocean melting

Siegert, 2002
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GRISLI ice sheet model (Ritz et al. 2001): overview

Snow accumulation

_ MODEL INPUTS:
(Marsiat 1994)

Initial topography
Climate forcing

MODEL PHYSICS:

MODEL

R

Ablation: PDD method
(Reeh 1989)

g Mass balance, ice dynamics,
ice temperature, ice rheology
PARAMETRISATIONS:

SMB, basal hydrology, calving, |
iIsostasy, sub-shelf melting

SIA

"slow”’

SSA
- fast”
shear flow . plug flow

inner part: ice streams

Grounding line

Basal hydrology (Peyaud et al. 2007
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Isostatic rebound (Le Meur&Huybrechts 1996) !I

MODEL OUTPUT:
lce extent, thickness,
velocity, temperature

Calving

(Peyaud et al. 2007)
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plug flow

ice shelve%
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L |

Sub-shelf melting
(Holland&Jenkins 2008)
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Transient simulations design: climate forcing

LGM simulated climate LGM, 21 ky BP
IPSL-CM5A-LR GCM
Braconnot et al. 2012

Regional indexes
based on TraCE-21ka:
transient climate
simulation
of last 21,000 years
(Liu et al. 2009)

Pl simulated climate
IPSL-CM5A-LR GCM oL 1850 ad

4 , a.d.
mBraconnot et al. 2012
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Transient simulations design: sub-shelf melting

Sub-shelf melting formulation (Holland&Jenkins 2008):
Two-equations formulation based on heat exchange at ice-ocean boundary

Bm (Zb) —

Ty (2) = 0.0939 — 0.057 - S (2,) + 7.64- 107 - 2,

PoCpoVtFm - (TO (Zb) - Tf (Zb))2

We need ocean

L; p;

temperature, salinity to
force the parametrisation
during the simulation
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Transient simulations design: ocean forcing

We need ocean temperature, salinity to force the
parametrisation during the simulation

v

Regional ocean temperature and salinity profiles based on TraCE-21ka
transient climate simulation of last 21,000 years (Liu et al. 2009)
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Transient simulations design: ocean forcing

We need ocean temperature, salinity to force the
parametrisation during the simulation

v

Regional ocean temperature and salinity profiles based on TraCE-21ka
transient climate simulation of last 21,000 years (Liu et al. 2009)
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Statistical ensemble of simulations: LHS approach

Poorly constrained Ice Sheet Model parameters:

l we don’t want our simulations’ results to depend
= W on ad-hoc individual model parameters values!
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Statistical ensemble of simulations: LHS approach

Poorly constrained Ice Sheet Model parameters:
we don’t want our simulations’ results to depend

on ad-hoc individual model parameters values!

Precipitation correction factor
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Lapse rate factor

We select 5 model parameters and perform a
statistical sampling (Latin Hypercube Sampling)

v

VLA Ensemble of 100 ice sheet model simulations:
”slow” . : . . .
shear flow each simulation has a different combination
e of _model parameter values!

SIA enhancement factor
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Basal melting parameter

Basal drag coefficient
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Outline

e Study area and scientific motivations

* Ice sheet model description and simulations setup

e Last deglaciation of the Barents Sea Ice Sheet:

- Key results from our simulations
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e Conclusion
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Model/data comparison: ‘“admissible simulations”

Ensemble of 100 ice sheet model simulations: each simulation has a
different combination of model parameter values!

v

simulated/DATED-1 ice extent (21-13 ky BP)

Direct comparison between

% of total area

Model-data agreement

Model-data overestimation

Model-data underestimation
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Simulation time (ky BP)

“Best fit” ensemble members
Remaining ensemble members

Simulation time (ky BP)

Simulation time (ky BP)

9 “admissible simulations” showing the best
model/data agreement are used to construct
min-avg-max simulated deglaciation scenarios
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Model parameter values in “admissible simulations™

9 simulations (“best fit”) showing the best model/data agreement:
distribution of the parameter values compared to original range of values?

Simulation 39 Simulation 43 Simulation 47

e Lapse rate, elevation correction and
basal drag coefficient factor values

spread across full interval length;

e SIA enhancement factor and sub-shelf
melting coefficient values clustered at
high end of full range intervals;

Symbol “FE” Range “FE” Avg “AS” range “AS” avg

A (4 — 8.2] 6.1 (5.0 — 7.8 6.5
5 (0.03 —0.1] 0.065 [0.05 — 0.1] 0.082
Esia 1 — 5.6 3.3 (3.6 — 5.4] 4.8

cr 1-10]-107° 5-107° 2-10]-107° 4-107°
fin 0.005—1.5]-107% 0.8-107? 0.6 —1.5-10"% 1.2.-107°

Parameter values in individual simulation

(] Parameter values in “best fit” members
Y  Average parameter values in “best fit” members
= Parameter values in remaining members
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Last deglac:|at|on of the Barents Sea ice sheet

e Early retreat of western ice sheet margin
in Bjornoyrenna between 21-18 ky BP;

e Late retreat of northern and eastern ice
sheet margins after 15 ky BP;

e Collapse of Fennoscandian/Barents Sea
ice sheet connection: 16-15 ky BP in
max-avg, 17-16 ky BP in min scenarios;

* Final ice sheet collapse: 15-13 ky BP;

e Marked southwest-to-northeast
deglaciation pattern;

]
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Drivers of ice sheet retreat
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Key results:

« Southwest-to-northeast deglaciation
pattern due to different oceanic conditions
In western/central and northern/eastern

Barents Sea (slides 13-14);

e primary control of sub-shelf melting
(panel D) on grounding-line discharge
(panel F) and ice retreat (panel A);

* Prescribed eustatic sea level rise
(panel G) amplify the impact of sub-shelf
melting in western-central Barents Sea
between 21-18 and 15-14 ky BP;

e Under low sub-shelf melting conditions,
prescribed eustatic sea level rise
(panel G) has little impact on ice retreat;
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Outline
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Model/DATED-1 comparison: overview

21 ky BP
200 km

B

20 ky BP

200 km

'
o

19 ky BP

200 km

21 20 19 18 17 16 15 14 13

18 ky BP

200 km i

Simulation time (ky BP)

e ice extent underestimation at western ice
sheet margin between 21-18 ky BP (red);

e |ce extent overestimation at eastern ice
sheet margin after 18 ky BP;

15 ky BP
200 km

"

I Agreement [N Underest. I Overest.

13 ky BP

« model/data agreement in central/northern
Barents Sea during the deglaciation:

+ collapse of FIS/BSIS connection (16-15 ky BP)
+ final ice sheet deglaciation (15-13 ky BP)

]
23 TUDelft



lce extent underestimation between 21-18 ky BP

18 ky BP
200 km

t——e

21 ky BP
200 km

—————

20 ky BP
200 km

——————

19 ky BP
200 km

———

I Agreement I Underest. I Overest.

Early retreat of western margin not supported by DATED-1 reconstruction:
what is causing this model/data mismatch?

e Trace21ka subsurface (200-400 m depth) ocean temperatures at western margin
~2-4 °C between 21-18 ky BP: possibly overestimated compared to proxy reconstructions;

 Trace-21ka ocean temperature warmer between 200-400 m depth than 400-800 m depth,
thus higher sub-shelf melting values away from the grounding-line: in contradiction with
ocean cavity circulation and plume models applied over Antarctic ice shelves;

e Overestimated extent of simulated Bjornoyrenna Ice Stream and relatively coarse horizontal
resolution (20 km): amplified response to ice shelf thinning/sea level rise;

]
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lce extent overestimation between 18-15 ky BP

18 ky BP
200 km

| —

17 ky BP
200 km

| —

16 ky BP
200 km

e —

15 ky BP
200 km

I Agreement I Underest. Immmmmm Overest.

Eastern margin retreats later than suggested in DATED-1:
what is causing the model/DATED-1 mismatch?

 Atmospheric forcing extremely low until 15 ky BP at eastern margin: mechanisms of
regional warming/enhanced seasonality neglected in climate forcing/PDD method;

» Sea level rise prescribed uniformly in our study: regional sea level rise could
trigger initial ice retreat in spite of cold conditions (O’Cofaigh et al. 2019);

* However, limited data from eastern ice sheet margin (Hughes et al. 2016): model/data
mismatch might be caused by uncertainties in DATED-1 reconstruction;
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Outline erc

e Study area and scientific motivations

* |Ice sheet model description and simulations setup

» Last deglaciation of the Barents Sea Ice Sheet:

- Key results from our simulations

- Model/DATED-1 comparison

e Conclusion
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Conclusion erc

 Simulated deglaciation of the Barents Sea Ice Sheet starts with retreat of
the western margin between 21-18 ky BP, driven by ocean forcing and
amplified by the prescribed eustatic sea level rise: mismatch with DATED-1
can be explained by warm 200-400 m depth ocean forcing during this time;

 Retreat of eastern ice sheet margin starts after 15 ky BP, much later than
DATED-1 suggests: regional atmospheric warming and sea level rise might
explain the mismatch, although DATED-1 highly uncertain for this margin;

 Timing of disintegration of the connection with Fennoscandian ice sheet
(16-15 ky BP) and final ice sheet collapse (15-13 ky BP) are in agreement
with DATED-1 reconstruction; both events primarily driven by ocean forcing,
with sea level rise amplifying the ice sheet response between 15-14 ky BP;

* Sub-shelf melting has a strong control on the simulated grounding-line
discharge, showing that a prolonged, gradual ocean warming is capable of
triggering sustained grounded ice discharge over multi-millennial timescales,
without including positive feedbacks such as MISI and MICI.

%
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Conclusion erc

 Simulated deglaciation of the Barents Sea Ice Sheet starts with retreat of
the western margin between 21-18 ky BP, driven by ocean forcing and
amplified by the prescribed eustatic sea level rise: mismatch with DATED-1
can be explained by warm 200-400 m depth ocean forcing during this time;

 Retreat of eastern ice sheet margin starts after 15 ky BP, much later than
DATED-1 suggests: regional atmospheric warming and sea level rise might
explain the mismatch, although DATED-1 highly uncertain for this margin;

 Timing of disintegration of the connection with Fennoscandian ice sheet
(16-15 ky BP) and final ice sheet collapse (15-13 ky BP) are in agreement
with DATED-1 reconstruction; both events primarily driven by ocean forcing,
with sea level rise amplifying the ice sheet response between 15-14 ky BP;

* Sub-shelf melting has a strong control on the simulated grounding-line
discharge, showing that a prolonged, gradual ocean warming is capable of
triggering sustained grounded ice discharge over multi-millennial timescales,
without including positive feedbacks such as MISI and MICI.
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