

ON THE CALIBRATION OF AN EVAPORATION-BASED METHOD OF SMOS SOIL MOISTURE

Vivien-Georgiana Stefan¹, Olivier Merlin², Maria-José Escorihuela¹, Beatriz Molero², Salah Er-Raki³

- ¹ isardSAT, Barcelona, Catalonia, Spain
- ² CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France
- ³ Université Cadi Ayyad, Marrakech, Morocco

Water resources scarcity

Agricultural constraint

- High percentage of water used for irrigation in Mediterranean countries
- Rainfall predictions uncertain
- Droughts
- Mismatch irrigation actual needs

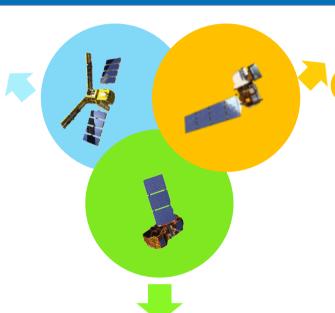
Evaporation V V Transpiration

Condensation

filtration

Monitoring resources

Modeling hydrological fluxes



Soil moisture - SM (soil evaporation)

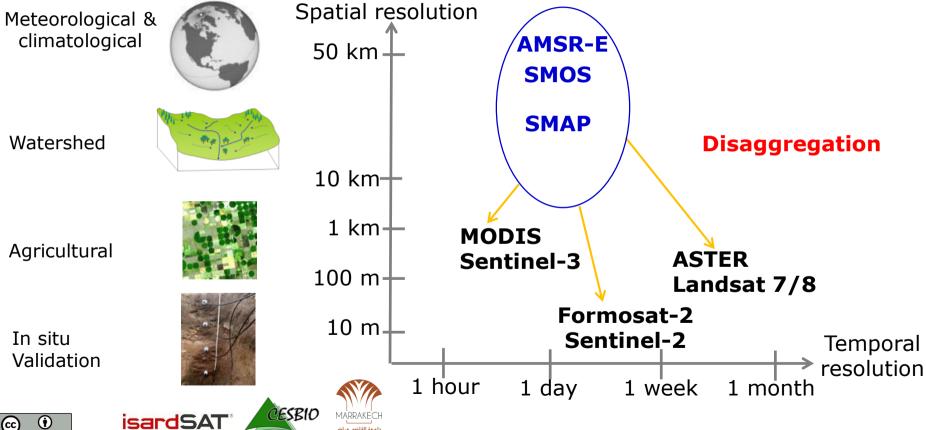
L-band (and C-band) Microwave

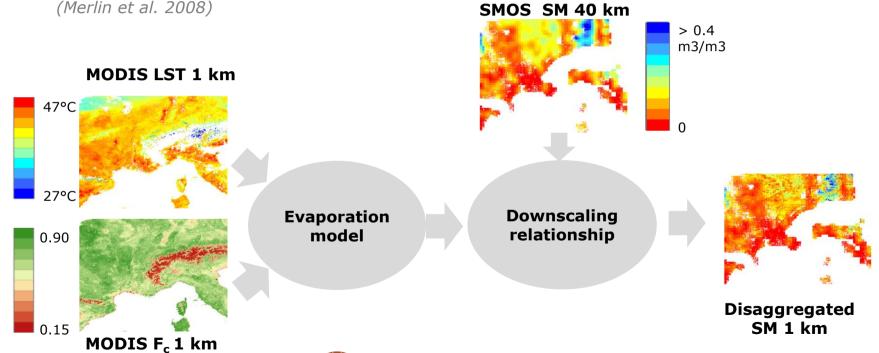
Land Surface Temperature - LST (Evapotranspiration)

Thermal Infrared

Vegetation index - F_c (Evaporation/Transpiration partition)

Visible and Near Infrared





DISaggregation based on **P**hysical **A**nd **T**heoretical scale **CH**ange (Merlin et al. 2008) **SMOS SM 40 km**

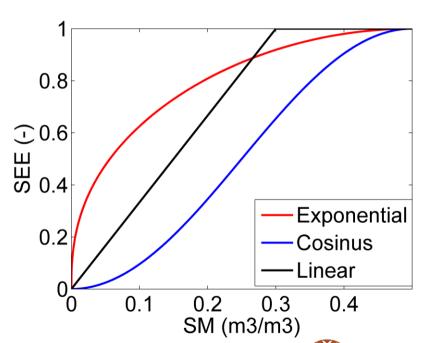
DISPATCH

1.Disaggregation equation:
$$SM_{HR} = SM_{LR} + \left(\frac{\partial SM_{mod}}{\partial SEE}\right)_{SEE=SEE_{LR}} * \left(SEE_{HR} - SEE_{LR}\right)$$

2.Semi-physical SEE(SM) model

3.Soil Evaporative Efficiency: SEE(LST) =
$$LE_s / LE_{p,s} = (T_{s,dry} - T_s) / (T_{s,dry} - T_{s,wet})$$

- T_{s,dry} soil temperature in fully dry conditions
- T_{s,wet} soil temperature in fully wet conditions



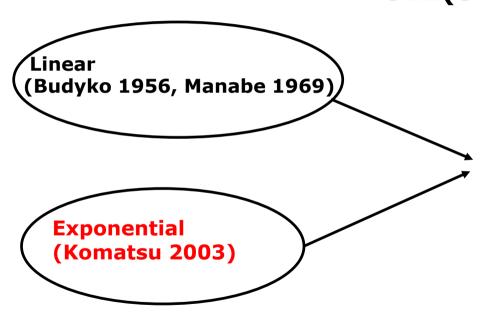
SEE(SM)

Linear (Budyko 1956, Manabe 1969)

Cosinus (Lee&Pielke 1992, Noilhan&Planton 1989)

Exponential (Komatsu 2003)

 $SEE = 1-exp(SM/SM_c)$



SEE(SM)

Calibrated on a daily and multidate basis and introduced in DISPATCH

Study sites

Algerri Balaguer (Catalonia, Spain)

→ Urgell (Catalonia, Spain)

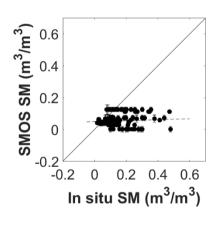
MOR3 (Morocco)

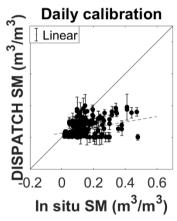
Results

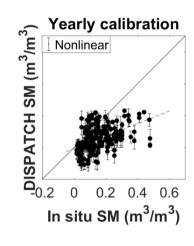
- Statistical results: correlation coefficient (R), slope of linear regression (S), bias and unbiased root mean square difference (uRMSD) presented per site, for all models and all calibrations
- Scatterplots presented per site, for the best model within each calibration

Urgell 2011-2012

	R	Slope	Bias	uRMSD
SMOS	0.084	0.028	-0.088	0.097
DISPATCH linear, daily calibration	0.34	0.17	-0.089	0.090
DISPATCH linear, multi-date calibration	0.084	0.028	-0.088	0.097
DISPATCH nonlinear, daily calibration	0.36	0.21	-0.088	0.089
DISPATCH nonlinear, multi- date calibration	0.50	0.39	-0.092	0.077



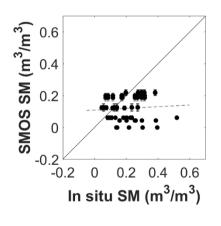


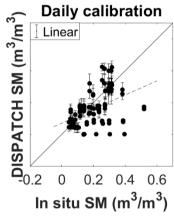


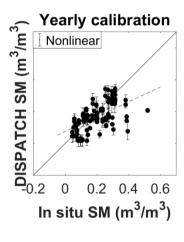
Urgell 2011-2012

Urgell 2015

	R	Slope	Bias	uRMSD
SMOS	0.081	0.053	-0.079	0.096
DISPATCH linear, daily calibration	0.44	0.44	-0.04	0.092
DISPATCH linear, multi-date calibration	0.081	0.053	-0.079	0.096
DISPATCH nonlinear, daily calibration	0.081	0.053	-0.079	0.096
DISPATCH nonlinear, multi- date calibration	0.57	0.47	-0.031	0.073



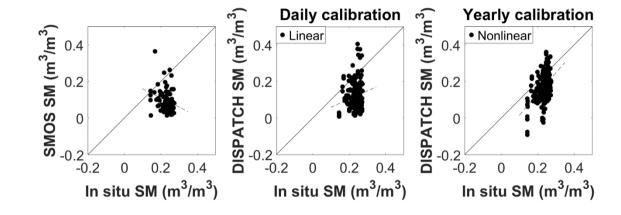




Urgell 2015

Algerri Balaguer

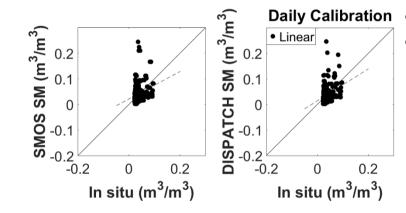
	R	Slope	Bias	uRMSD
SMOS	-0.20	-0.49	-0.14	0.066
DISPATCH linear, daily calibration	0.18	0.44	-0.11	0.061
DISPATCH linear, multi-date calibration	-0.081	-0.14	-0.15	0.056
DISPATCH nonlinear, daily calibration	-0.081	-0.14	-0.15	0.056
DISPATCH nonlinear, multi- date calibration	0.47	1.16	-0.063	0.054

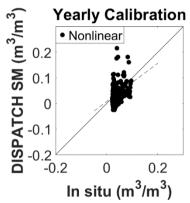


Algerri Balaguer

Morocco

	R	Slope	Bias	uRMSD
SMOS	0.25	0.54	0.0041	0.032
DISPATCH linear, daily calibration	0.32	0.62	-8e-5	0.031
DISPATCH linear, multi-date calibration	0.25	0.54	0.0041	0.0032
DISPATCH nonlinear, daily calibration	0.31	0.65	-0.0013	0.031
DISPATCH nonlinear, multi- date calibration	0.33	0.75	-0.0021	0.033





Morocco

Conclusions and perspectives

- This work has lead to the writing of an article: **Temporal calibration of an evaporation-based spatial disaggregation method of SMOS soil moisture data (Stefan et al. 2020, under revision for Remote Sensing)**
- Two SEE(SM) models (linear and nonlinear), with a daily and a multi-date calibration, have been implemented in DISPATCH and tested over 3 areas
- The nonlinear SEE(SM) model with a multi-date calibration performs better over all sites
- The nonlinear SEE(SM) model with a multi-date calibration could be implemented in the CATDS L4 (current version uses linear model with daily calibration) and into existing evapotranspiration models (based on a combination of thermal and microwave data)

