Speeding up reactive transport simulations: statistical surrogates and caching of simulation results in lookup tables

Marco De Lucia¹, Michael Kühn^{1,2}, Alexander Lindemann³, Max Lübke³, Bettina Schnor³

 GEZ German Research Centre for Geosciences, Fluid Systems Modelling, Germany 2 Potsdam University, Institute of Geosciences - Hydrogeology, Germany
Potsdam University, Institute of Computer Science - Operating Systems and Distributed Systems, Germany

EGU2020-17719 - ERE 6.1

EGU General Assembly 2020

Chemistry is the computational bottleneck in coupled reactive transport simulations: use pre-trained surrogates instead. *Real chemistry* called only if their inaccuracy is too large

- Operator splitting, sequential coupling, only advection
- Multiple multivariate regression (one regressor per output)
- Model hierarchy: mass balance as accuracy control
- R/PHREEQC 1D benchmark implementation: https://gitext.gfz-potsdam.de/delucia/RedModRphree

Using xgboost as regressor, speedup is achieved already for 50-elements grid

and it increases for larger grids. Trade-off: accuracy vs speedup

Surrogates, DHT

EGU2020-17719

2/3

Caching chemistry in Distributed Hash Tables (DHT) for further reuse during simulations produces large speedup in common scenarios: making good use of available RAM

Grow table

Chemistry

No: compute

- Low overhead: MPI One-Sided Communication
- Simple to implement in existing code
- No accuracy loss (fixed signif. digits)
- Retrieves exact input combination

Mpi: master-slave with variable package size Ketzin grid, 648420 elements, 200 iterations Homogeneous initial state

Next steps

Combine use of surrogates and caching (DHT) to make large scale reactive transport possible on desktop PC!

delucia@gfz-potsdam.de

Surrogates, DHT

1.0e-0

0.0005

0.00+00

EGU2020-17719

