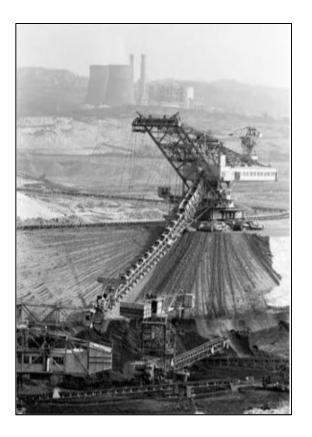


Evaluation of mining decommissioning strategies on catchment hydrology

¹Marco Lompi (*marco.lompi@unifi.it*) ¹Tommaso Pacetti (*tommaso.pacetti@unifi.it*) ¹Enrica Caporali (*enrica.caporali@unifi.it*)


¹ Department of Civil and Environmental Engineering, University of Florence, Firenze, Italy

Evaluation of mining decommissioning strategies on catchment hydrology M. Lompi, T. Pacetti, E. Caporali

General Objective:

Strategies definition to reduce the negative effects of **abandoned mining sites** on catchments **where an artificial reservoir is present.**

Methodology:

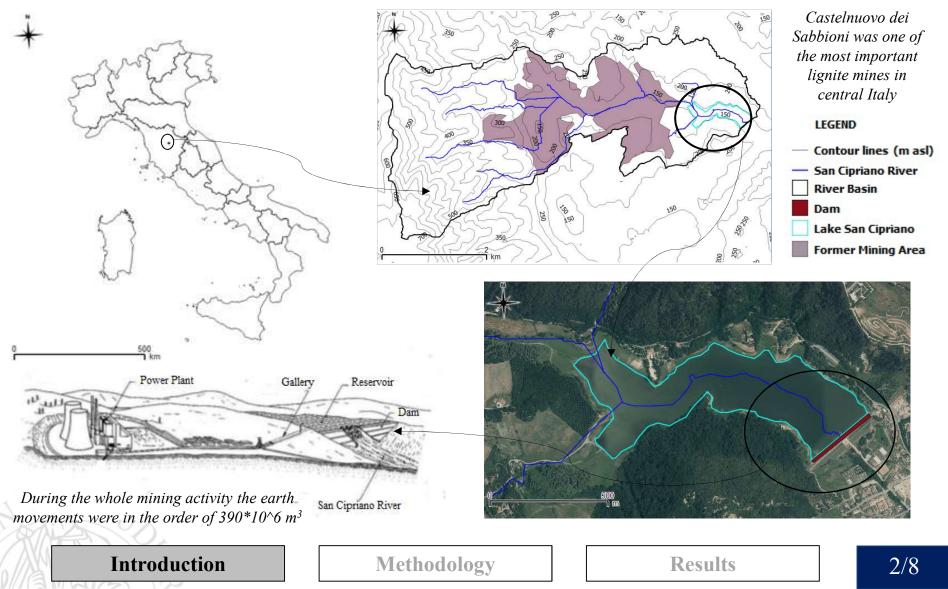
Sediment management at the catchment scale to promote sustainable water resources development through environmental restoration of the mining area.

How?

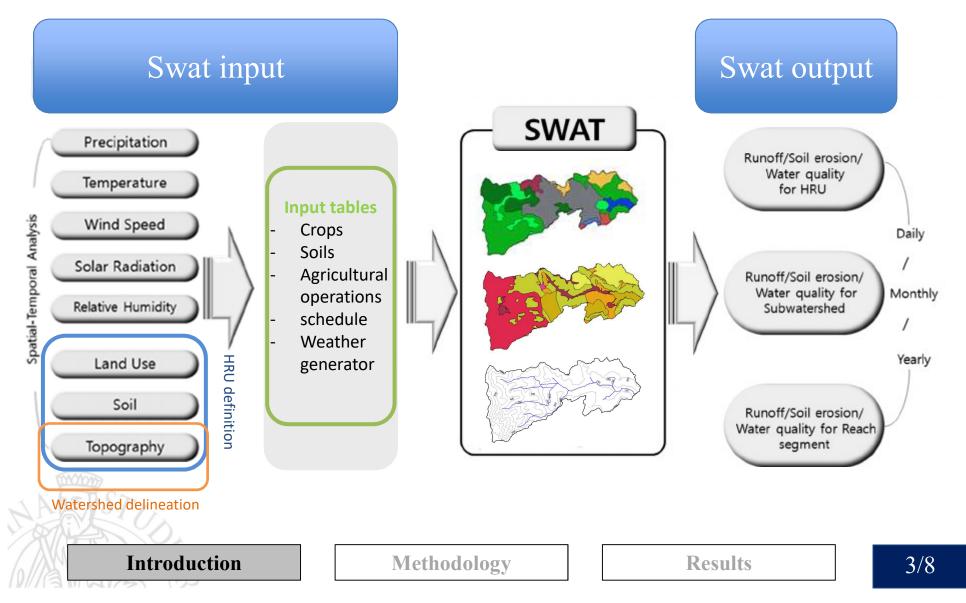
Analyzing different scenarios on SWAT (Soil Water Assessment Tool) through modifications of MUSLE equation, i.e. changing parameters of land use (C_{USLE}) or of river basin morphology (LS_{USLE}).

$$sed = 11.8 \cdot \left(Q_{surf} \cdot q_{peak} \cdot area_{hru}\right)^{0.56} \cdot K_{USLE} \cdot C_{USLE} \cdot P_{USLE} \cdot LS_{USLE} \cdot CFRG$$

Introduction


Methodology

Evaluation of mining decommissioning strategies on catchment hydrology M. Lompi, T. Pacetti, E. Caporali

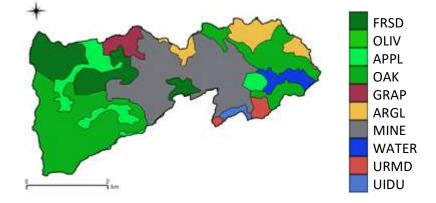

Overview of the Study Area

Evaluation of mining decommissioning strategies on catchment hydrology M. Lompi, T. Pacetti, E. Caporali

Soil Water Assessment Tool

Baseline and decommissioning scenarios

Baseline Scenario


Current scenario used for the model calibration

Renaturation Scenario

Conversion of the mining site with deciduous and oak forests change of C_{USLE}

Landscape restoration Changing the structure of the river network, i.e. catchment area change of C_{USLE} , LS_{USLE}

Introduction

Percentage of area with a specific landuse

	BASELINE	SCENARIO 1	SCENARIO 2
URMD	2.1	2.1	1.3
APPL	1	1.1	1.9
GRAP	2.5	2.5	2
OLIV	6.5	8.5	7.1
UIDU	0.7	0.7	0.8
WATER	2.8	2.8	4.9
ARGL	8.6	12.8	13
FRSD	16.1	22.3	10.7
OAK	33.7	47.2	58.3
MINE	26	0	0

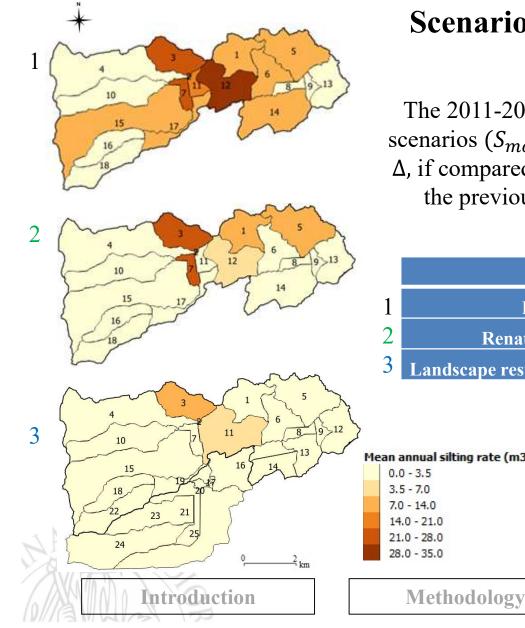
Methodology

Model Calibration on SWAT

Three bathymetries campaigns took place on the lake in the years 2002, 2011 and 2016, therefore **two different reservoir silting volumes are available**.

Period	silting volume [m ³]	Mean annual silting rate [m ³ /yr]
2002-2011	208000	<u>2300</u> 0
2011-2016	62000	12000

Since San Cipriano is an **ungauged river basin** the model has been calibrated on the **sediment transport equation** (2) with an **iterative calibration** (1) using the mean silting volume of the 2011-2016 interval as the land use data refer to the year 2013.


$$RE(x) = \frac{|S_{obs}(x) - S_{mod}(\theta, x)|}{S_{obs}(x)} .100$$
 (1)

Calibration Objective = RE < 3%

RE(x) = error at Lake San Cipriano location θ = parameter of the calibration S_{obs} = 12000 m³/yr S_{mod} = modelled silting rate

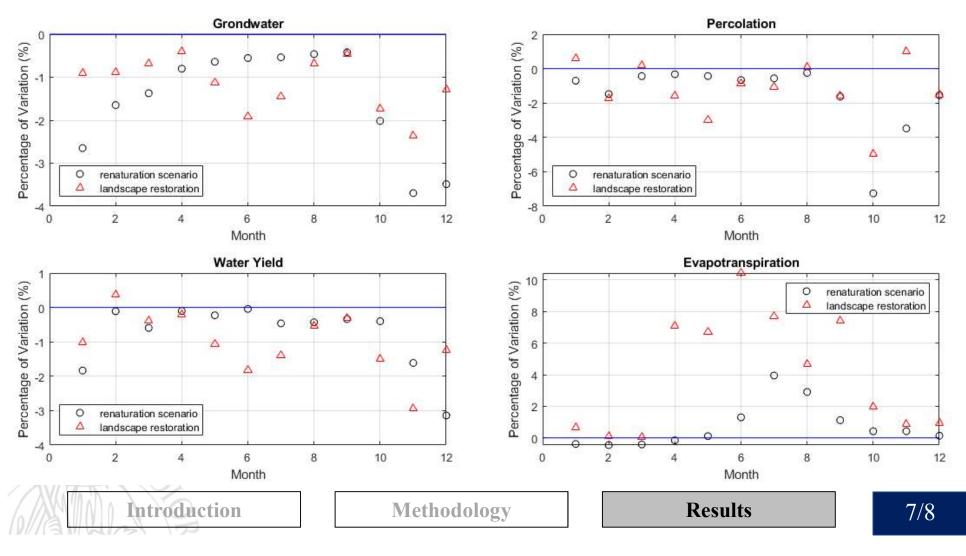
 $conc_{sed,ch,max} = conc_{SP} \cdot v_{ch,pk}^{SPEXP}$ (2) $\frac{\theta \quad \text{initial value}}{conc_{SP}} \quad 0.0001 \quad 0.01 \\ \text{SPEXP} \quad 1 \quad 1.075$ Introduction $Methodology \quad Results \quad 5/8$

Scenarios results for sediment yield

The 2011-2016 modelled mean silting rate of the three scenarios (S_{mod}) show different percentages of reduction Δ , if compared with the observed mean silting volume of the previous period (2002-2011), i.e. 23000 m³/yr.

	S_{mod} (m ³ /yr)	Δ (%)
Baseline Scenario	11625	49.5
Renaturation Scenario	5441	76.3
Landscape restoration Scenario	2968	87.0

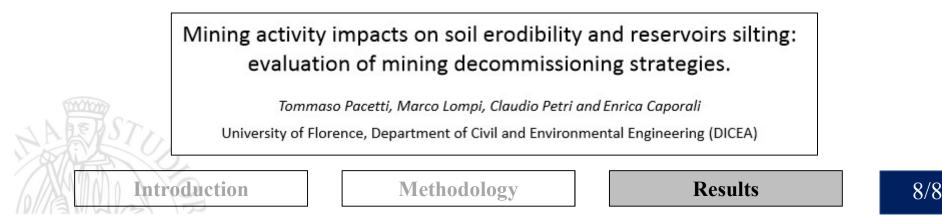
Mean annual silting rate (m3/yr*ha)


$$\Delta = \frac{S_{obs,2002-2011} - S_{mod}}{S_{obs,2002-201}} * 100$$

Results

Scenarios results for other model outputs

Percentage of variation between the two decomissioning scenarios and the current situation



Concluding comments:

- Mining activity causes the increase in soil loss and the reservoir storage reduction
- Re-naturalize former mining sites leads to a strong reduction of sediment yield and to a conservation of the water resource
- A reduction of water yield and an increase of the evapotranspiration in the renaturalized mine area were detected
- Hydrosedimentological modelling is suitable for decision makers to choose mining decommissioning strategy

Under review on Journal of Hydrology:

