Soil macropore-matrix mass exchange tracer experiments that account for sorption at macropore walls

Horst H. Gerke1, Jaromir Dusek2, Steffen Beck-Broichsitter1, Martina Sobotkova2, Michal Dohnal2, Tomas Vogel2, Michal Snehota2, Milena Cislerova2, Martin Leue1, Ruth H. Ellerbrock1, Christoph Haas1

1Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Programmbereich 1 „Landschaftsprozesse“, Arbeitsgruppe Hydropedologie, Müncheberg
2Czech Technical University in Prague, Faculty of Civil Engineering, Prague, Czech Republic

Wien 5.5.2020
Hypotheses & Objectives

Hypotheses

- Macropore – matrix interface is a key for understanding local non-equilibrium processes and preferential flow

Objective

- Simulation of percolation experiments

- Sorption heterogeneity along macropore walls

- Extension of dual-permeability modeling towards chemical sorption for reactive solute transport modeling
1D vertical

Water flow: 2 Richards-equations

\[C_f \frac{\partial h_f}{\partial t} = \frac{\partial}{\partial z} \left(K_f \frac{\partial h_f}{\partial z} - K_f \right) - \frac{\Gamma_w}{w_f} - S_f \]

\[C_m \frac{\partial h_m}{\partial t} = \frac{\partial}{\partial z} \left(K_m \frac{\partial h_m}{\partial z} - K_m \right) + \frac{\Gamma_w}{1-w_f} - S_m \]

Water transfer, \(\Gamma_w \):

\[\Gamma_w = \alpha_w (h_f - h_m) \]

\[\alpha_w = \frac{\beta}{a^2} \gamma_w K_a(h) \]

Solute transport: 2 CDE

\[\frac{\partial}{\partial t} \left(\theta_f R_f c_f \right) = \frac{\partial}{\partial z} \left(\theta_f D_f \frac{\partial c_f}{\partial z} - q_f c_f \right) - \theta_f \mu_f c_f \frac{\Gamma_s}{w_f} \]

\[\frac{\partial}{\partial t} \left(\theta_m R_m c_m \right) = \frac{\partial}{\partial z} \left(\theta_m D_m \frac{\partial c_m}{\partial z} - q_m c_m \right) - \theta_m \mu_m c_m + \frac{\Gamma_s}{(1-w_f)} \]

Solute transfer, \(\Gamma_s \):

\[\Gamma_s = (1 - d) \Gamma_w c_f + d \Gamma_w c_m + \alpha_s (1 - w_f) \theta_m (c_f - c_m) \]

\[\alpha_s = \frac{\beta}{a^2} D_s(\theta) \]

Two-domain concept

Structured soil

SM domain

PF domain

Mass Transfer

\(w_m \)

\(w_f = 1 - w_m \)

Gerke & van Genuchten WRR 1993a, 1993b; AWR 1996
Problems & Objectives

- High sensitivity of the solute mass transfer coefficient, α_s
- Effective solute diffusion coefficient, D_a, not evaluated, yet

\[\alpha_s = \frac{\beta}{\bar{a}^2} D_a(\theta) \]

Extension towards chemical sorption for reactive solutes

- Upscaling local properties to “effective” macroscopic scale parameters of the pore network
- Heterogeneity of sorption properties along macropore walls
Coating Analyses

→ Focus on Luvisol Bt-horizons

Intact, DRIFT

Mapping

Separation

Destructive

Mixed Prop.

Loess Bt

Till Bt
CEC & OM maps from DRIFT

CEC distributions predicted by
- PLSR and total DRIFT spectra (middle)
- linear regression using signal intensity at WN 1246 cm\(^{-1}\) (right).

Leue et al. 2018

OC: mm-scale organic carbon distribution

Classification: macropore types

Differences in Sorption & wettability

Microtopography & roughness

Coated crack

Leue & Gerke (2016) JPNSS 179:529-536

Mass exchange experiment

Applied fluorescein concentration: 60 mg/L, ≈10 mL sprayed for 3.5 hours (0.9 mg/s).

Calculated concentrations

Picture: C. Haas, ZALF; Haas et al. Geoderma 2020
Percolation: Bromide and BB

A) Steady-state flow, bromide Brilliant Blue FCF (BB) → Local equilibrium conditions

Transport parameters, only bromide $q = 11.5$ cm d$^{-1}$

Single domain model: $\lambda = 2$ cm;
Dual: $\lambda_f = 10$ cm, $\lambda_m = 2$ cm, $\alpha_{ss} = 10$ d$^{-1}$, $w_f = 0.04$, $q_f = 142$ cm d$^{-1}$

→ Effect of α_{ss} on bromide BTC shape
B) Percolation with flow interruption → to stimulate local non-equilibrium and mass exchange
Discussion & Conclusions

- Local macropore structural properties are characterized: texture, organic matter, micro-topography, bulk density, chemical sorption,…
- Numerical modelling based on small-scale distributed maps of OM composition as proxy of OM sorption properties.
- Simulation of reactive tracer breakthrough curves in undisturbed soil columns possible with two-domain model.

Open questions remain:

How is mass exchange affected by sorption along macropore walls during reactive solute transport
Acknowledgements

Thanks to:

…the Deutsche Forschungsgemeinschaft Financial support by the under grants DFG GE990/10, EL 191/7, and LE3177/1

…and you for your attention!