

Analysis of the surface temperature distribution at Badain Jaran Desert using fully coupled hydrothermal method

Haijun Hu, Teodolina Lopez, Yujun Cui, Raphaël Antoine, Ni An, Weikang Song

1. Introduction

2. Materials and methods

3. Results

4. Discussion

5. Conclusions

Badain Jaran Desert site

Surface Temperature at the site

Motivation

Meteorological Data

Meteorological Data – Cont'd

Date Rainfall

Volumetric water content

Ma and Eumunds (2006)

Zhao et al. (2011)

Lake water temperature

The fully coupled hydro-thermal method developed by Anni et al. (2017)

The governing equation of liquid and vapor water mass flow can be expressed as:

$$C_{\varphi} \frac{\partial \varphi}{\partial t} + C_{\varphi T} \frac{\partial T}{\partial t} = \nabla \cdot \left[K_{\varphi} \nabla \varphi \right] + \nabla \cdot \left[K_{\varphi T} \nabla T \right] + \rho_{l} \nabla K_{w}$$

The governing equation of heat flow can be expressed as:

$$C_T \, \frac{\partial T}{\partial t} + C_T \, \varphi \, \frac{\partial \varphi}{\partial t} = \nabla \cdot \left[K_T \nabla T \right] + \nabla \cdot \left[K_T \, \varphi \nabla \varphi \right]$$

Initial temperature: 5°C Initial suction: hydrostatic equilibrium line

(A1)

Bottom boundary condition:

(1) Temperature at bottom

 $T = \begin{cases} 5 - 4 \times \sin(\text{DOY}/44 \times \pi) & \text{DOY} \le 44 \\ 5 + 25 \times \sin[(\text{DOY}-44)/322 \times \pi) & 44 < \text{DOY} < 366 \end{cases}$

(A1)

(2) Suction at bottom

 $\varphi = 0$

Heat flux at the top boundary

 $q_{htop} = -R_n + H + L_E$

(A1)

The net solar radiation

The net solar radiation

SW
$$\downarrow = \left(0.25 + 0.5 \frac{n}{N} \right) R_{sa}$$

SW $\uparrow = \alpha$ SW \downarrow
LW $\downarrow = \varepsilon_a \sigma T_a^4$

LW
$$\uparrow = \varepsilon_s \sigma T_{surf}^4$$

Sensible heat and latent heat

The sensible heat

$$H = \frac{\rho_a C_{pa} (T_s - T_a)}{r_a}$$

The latent heat

$$L_{E} = 1000L_{v}E_{a}$$

$$\frac{E_{a}}{E_{p}} = \frac{e_{0} - e_{a}}{e_{s} - e_{a}}$$

$$E_{p} = \frac{10^{-3}}{86400}(a + bu)(100 - h_{a}) \quad \text{Song (2015)}$$

Water flux at the top boundary

Hydraulic property

Water retention curve

VG model

Parameter	value
<i>a</i> (cm)	88.3
$ heta_{ m s}$	0.382
θ_r	0.0237
n	2.87
k_{s} (m/s)	1.06×10^{-4}

 $k = k_s \Theta^{0.5} [1 - (1 - \Theta^{1/m})^m]^2$

Thermal property

 $\lambda = 0.18 + 3.61 \theta^{0.33}$

Heat conductivity

Calculation vs measurement at about 1 m depth

Soil temperature at about 1m depth

Calculated and measured temperatures (B1)

DOY

Surface temperature difference between different WTB depths

- (1) The numerical approach can be used to correctly determine the soil surface temperature changes with varying water table depth.
- (2) The hydraulic and thermal parameters need to be refined to increase the calculation quality.
- (3) Slope direction seems to be important to be accounted for because it can greatly affect the solar radiation, wind speed etc.