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VISCOELASTICITY

How are ground deformation

patterns modified by a temperature-
dependent viscosity distribution?

Does the choice of ambient thermal
regime change the predicted ground
deformation patterns?

Observed deformation field is a function of:
« Source processes involved

« Surrounding crustal structure

* Rheological response

Shallow or long-lived magmatic systems induce
elevated thermal regimes

 Invalidates elastic assumption?
» Time-dependent rheological effects?
e Thermomechanical strain partitioning?

Compare popular viscoelastic configurations,
Maxwell and SLS, in an overpressure-driven
thermomechanical deformation model




TAU P(_) VO | CANO Taupo volcano, New Zealand, is a large silicic

caldera complex in the Taupo Volcanic Zone

* Two caldera-forming events; 1.8 ka Taupo (VEI 7)
Easting, UTMG0S 400000 420000 410000 and 26.5 ka Oruanui (VEI 8) eruptions
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MODE | ] NG Consider 3 thermomechanical set-ups, with a

magmatic temperature of 1123 K (850 °C)

* "Lin30" - 30 K/km linear geotherm, with no
additional constraints

"Lin40" - 40 K/km linear geotherm, with no
additional constraints

Source {1 |

"BDTZ" - Temperature constraints for basal and mid-
crust, producing a ramped geotherm

_ Models produce near-identical viscosity profiles
Centre Farfield ] above the modelled reservoir

Ln30 —  -—-
Lind0 —  -—-
BDTZ —— -

o\l N\t ] Compare against “expected” viscoelastic responses
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* "Iso18" - 10" Pa s for whole model-space




DIFFERENCES IN VERTICAL DEFORMATION

Bt Maxwell = expected to produce linear
5017 deformation (Head et al., 2019)

Iso18 . . .
o * Inconsistent deformation response in

Lin40 thermomechanical set-ups
—— BDTZ
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» Produces uplift at large distances from source

Time, yr
Timeseries are evaluated directly above the source, showing
the different deformation responses of the models
Maxwell (above), SLS (below)

SLS - consistent viscosity-dependent rate-
decreasing deformation (Head et al., 2019)

Is018 » Rate of deformation is viscosity-dependent
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* Why do the thermomechanical models differ?




...AKE HOME MESSAGES

SLS rheology captures a range of deformation Maxwell rheology is a viscoelastic fluid

timescales, due to viscosity structure * Viscosity gradients allow crustal material to
* Viscous effects not limited to long-term "flow"” in response to imposed overpressures

BDTZ model attains ~10% more uplift than * Produces inconsistent deformation patterns
standard 30 K/km gradient model Raises questions about applicability of this

« Deformation partitioning due to local viscosity rheology to “solid” deformation studies
structure - reduces overpressure requirements?

Lin40 BDTZ

Local viscosity structure for each of the
thermomechanical set-ups, with
contours showing 10", 108, 10", 1029 Pa s
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APPENDIX

COMSOL Multiphysics® > forward models
of ground deformation

Full 3D geometry with topography, crustal
heterogeneity from 3D seismic tomography
(Eberhart-Phillips et al., 2010)

Steady-state temperature field from thermal
constraints, calculate temperature-
dependent viscosity using Arrhenius
formulation (e.g. Del Negro et al., 2009;
Cregg et al., 2012; Hickey et al., 2016)

= Anexp 7]
Nrp = Ap€XP RT
Ap — 1x10% Pa's; E, = 1.3x10° k] /mol

Modelling a hypothetical deformation
episode, source characteristics based on
inferences of the 1.8 ka Taup0 eruption (e.g.
Ellis et al, 2007)

* Oblate spheroid geometry, horizontal radius
of 3.4 km and vertical radius of 0.7 km

e Centred at depth of 6 km
* Magmatic temperature of 850 °C

* BDTZ model basal temperature of 950 °C,
mid-crustal temperature of 550 °C
(Stagpoole et al., 2013)

* Qverpressure of 10 MPa
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