

Ammonium adsorption by chabazite zeolite-tuff from swine manure for soil amendment Giulio Galamini, Giacomo Ferretti, Valeria Medoro, Nicola Tescaro, Barbara Faccini and Massimo Coltorti

INTRODUCTION AND AIM OF THE WORK

The need to improve fertilizer use efficiency (FUE) is one of the major challenges for modern agriculture and environmental sustainability. Animal manures, especially in liquid form, represent very important organic fertilizers but their very high availability of nutrients, especially in the form of NH_4^+ , stimulates microbial activity leading to rapid N soil transformations and significant losses from the soil in the form of NO₃⁻ and N GHG gasses, causing severe environmental pollution. A valid methodology for contrasting this phenomenon is the use of (zeolitites, ZEO), particular rocks with high zeolite content (>50%) in the treatment of zootechnical liquid manure (ZLM). These rocks are particularly efficient as sorbent of cationic species and hence their use can lead to a significant reductions of NH_4^+ concentration. Then, once «charged» of NH_4^+ , ZEO can be applied as soil amendments and act as slow release fertilizer.

While ZEO NH_4^+ sorption from synthetic solutions is a well investigated field, actually there is a lack of knowledge regarding his sorption behavior in real ZLM.

The aim of this work is to deeply characterize NH_4^+ adsorption by a chabazite-rich ZEO (CHA) quarried in center Italy, in contact with ZLM, in particular with swine manure. A series of batch experiments were conducted in order to define the equilibrium isotherms, kinetic models and thermodynamic parameters.

Department of Physics and Earth Science, University of Ferrara, Ferrara, Italy

EXPERIMENT	AL SETUP AN	D CALCULATIONS		
 Batch experiment CSM for 20 h. pH barely varied correction was contracted of the stripping evants. 	ISOTHERMS hts with different m during the experim onducted. luated by perform	nasses of CHA mixed with ment thus no pH ing blanks.		
TEMPERATURES	BEST MODELS	LINEAR EQUATIONS		
13, 20, 37 °C	Harkins-Jura -	$\Rightarrow \frac{1}{q_{e^2}} = \beta In(C_e) + \alpha$		
CHA DOSAGES	Freumich —	$q_e - \kappa_F \times C_e^{-/m}$		
0.5, 1, 5, 5, 8, 12 g	Langmuir —>	$\frac{1}{q_e} = \frac{1}{q_{max}K_L} \frac{1}{C_e} + \frac{1}{q_{max}}$		
 Batch experiments with a specific mass of CHA mixed with CSM based on CSM initial NH₄⁺ content. Only data sufficiently far from equilibrium were considered: F(t) < 85 %, F(t) = q(t)/q_e Temperature fixed at 20 °C. The experiments were conducted in 3 replicates. 				
BEST MODE	LS LIN	EAR EQUATIONS		
Pseudo-Second C	Drder $\longrightarrow \frac{t}{q_t} = \frac{t}{q_t}$	$\frac{1}{l_e}t + \frac{1}{h}$		
Intraparticle Diff	usion $\longrightarrow q_t = k$	$C_{ID}t^{0.5} + C$		
Elovich –	$\rightarrow q_t = \frac{2}{q_t}$	$\frac{.3}{\alpha} In(t+t_0) - \frac{2.3}{\alpha} In(t_0)$		
THERMODYNAMICS				
METHODS APPL	IED LIN	EAR EQUATIONS		
van't Hoff equat	$\operatorname{ion} \longrightarrow \operatorname{In}(K_{eq})$	$) = -\frac{\Delta H}{R} \frac{1}{T} + \frac{\Delta S}{R}$		
Gibbs-Helmholt	$z \longrightarrow \Delta G = \Delta$	$H - T\Delta S$		
 NH₄⁺ were measured with an Ion Selective Electrode (ISE) Orion 95-12 connected to an Orion 4star pH-ISE benchtop (Thermo Fisher). 				
Wathematical Symu q_e : equilibrium adsorption cap C_e : equilibrium concentration α , β : Harkins-Jura constants K_F : Freundlich constant K_L : Langmuir constant q_{max} : maximum adsorption ca q_t : adsorption capacity at time h: initial adsorption rate (mg g t: time (min)	Jois in order of appendix order of appendix of appendix of appendix of appendix of appendix of a point o	particle diffusion constant pt (graph q_t vs. $t^{0.5}$) adsorption rate constant brium constant enthalpy change ($J mol^{-1}$) ntropy change ($J K^{-1} mol^{-1}$) of free energy change ($kJ mol^{-1}$) rature (K) sal gas constant ($J K^{-1} mol^{-1}$)		

RESULTS AND DISCUSSIONS

In the case of CHAg (Fig.4a) diffusion through macro and mesopores was the main process during the first ISOTHERMS 60 minutes of contact. During this phase a thin NH_4^+ CHAµ and CHAg showed L3 type curve (Fig.1), thus the boundary layer were developed (thickness is proportional to the intercept C). After 1 hour the layer thickens ormation of a multilayer bonding structure occurred. There was no significative differences with respect to the significantly while NH_4^+ slowly penetrates inside the emperatures tested for CHAµ, while temperatures has more micropores.

For CHAµ diffusion is not so important as for CHAg, as elevant effects on CHAg. -larkins-Jura was found to be the best isothermal model demonstrated by the high value of the intercept, and just within the first minutes of contact CHAµ has developed ⊂ig.2). an adsorption layer thicker than CHAg (Fig.4b).

Figure 1. C_e against q_e curves and relative R².(a) CHAµ, (b) CHAg

Figure 2. Harkins-Jura isotherms and relative R2.(a) CHAµ, (b) CHAg

KINETICS

sorption for CHAµ NH_{A}^{+} CHAg has shown / and differences in the sorption (Fig.3)*,* kinetics in particular CHAµ adsorbed NH_4^+ more rapidly than CHAg and reaches higher equilibrium capacity.

CC D

Università

degli Studi

di Ferrara

Figure 4. ID plots with R² and intercept C values. (a) CHAg, (b) CHAµ.

THERMODYNAMICS

Average values for 13, 20 and 37 °C				
ZEO size	ΔH (J mol⁻¹)	ΔS (J K ⁻¹ mol ⁻¹)	∆G (kJ mol⁻¹)	
CHAg	2492	12.5	-1.2	
СНАμ	2120	13.7	-1.9	

The adsorption was an exothermic spontaneous process $(\Delta H > 0, \Delta G < 0)$ and it was associated with an increase of the chaoticity in the interphase between the solid and the liquid phase ($\Delta S > 0$).

CONCLUSIONS

In order to develop multilayer conditions and achieve maximum adsorption capacity ZEO should be applied at dosages < 6%. CHAg has performed better at higher temperatures. Kinetic analysis showed that CHAµ approaches equilibrium faster than the granular one and intraparticle diffusion was a relevant process for both.

The studied Italian chabazite-zeolitite was confirmed as a valid material for the treatment of zootechnical liquid manure and these data can be of high value for future applications at field scale.