

Induced polarization for the spatial characterization of biogeochemical hot spots

Timea Katona¹, Jakob Gallistl¹, Sven Nordsiek², Matthias Bücker³, Sven Frei², Stefan Durejka², Benjamin Gilfedder² and Adrian Flores-Orozco¹

Introduction

- Biogeochemical hot spots are spatially limited areas where processes such as sulfate or iron reduction take place in high reaction rates compared to the surrounding area.
- Biogeochemical hot spots are of major interest due to the possible emission of greenhouse gases (carbon dioxide).

Objective

- Biogeochemical hot spots are sensitive environments classical geochemical sampling methods (e.g., piezometers or suction cups) bring oxygen into anoxic areas.
- Delineate field scale biogeochemical hot spots and their geometry without disturbing the system
- Resolve the granite bedrock and the overlying peat
 - If the granit is resolved, we can focus on the changes in the peat

- Noninvasive geophysical method induced polarization
- Hypothesis:
 - Granite has lower polarization response than peat
 - biogeochemical active areas have higher polarization response than peat

Induced polarization

- Induced polarization (IP)
 - Imaging 4-electrode array
 - Two electrodes used for current injections, two electrodes used for voltage measurements
 - Interchange electrode pairs → normal and reciprocal measurements
 - Impedance is measured → complex conductivity/resistivity
 - Developed for detecting metallic minerals

Induced polarization

- In the presence of an external electrical field the electrons in a metallic conductor relocate along the conductor's surface
- In the electrolyte the charged conductor attracts ions
- Migration currents charge the electrolyte around the poles of the conductor
- The charging continues until it reaches the equilibrium

Charge density Jmig negative positive Jdiff Particle Jdiff Diffuse layer Diffuse layer Bulk electrolyte Jmig

Fig: Bücker et al., 2018

J_{mig}- migration current
J_{diff}- diffusion current
E_{ext}- external electric field

Study site

- Lehstenbach catchment in Bavaria (Germany).
 - Granite bedrock
 - Riparian wetland: peat soil, with the vegetation peat moss (Sphagnum) and purple moor-grass (Molinia caerulea)

Experimental setup

Thickness of the peat was measured by sticking a metal rod of 0.5 cm diameter into the soft ground until it reached a solid surface.

IP measurements at 1 Hz

- 64 profiles (black lines)
 - 3 profiles presented here:
 - By 25, By 46 and By 68
- 64 electrodes per line
- 20 cm separation
 - between electrodes and lines
- coaxial cables
- stainless steel electrodes
- DAS1 unit
 - Multi-Phase Technologies

Geochemical analysis

- Fluid samples
 - 3 locations:
 - S1, S2 and S3
- Freeze core
 - 2 locations:
 - S1 and S2

Experimental setup

Pictures of the site

Electrode

Thick grass and moss, electrode spacing: 20 cm

Sphagnum

Measurement setup and DAS1 instrument

Data quality

- Normal reciprocal measurements
- The pseudosection of By 25 in terms of apparent resistivity (ρ_a) and apparent phase (ϕ_a).
- Data collected with coaxial cable show high data quality

Normal-reciprocal analysis

- Analysis of the normal and reciprocal misfit helps to identify outliers and to define error model parameters (Flores Orozco et al., 2012).
- The histograms of the misfit show normal distribution with low standard deviation (σ_R =0.027, σ_{ϕ} =1.1).

Results

- Phase values help to resolve the granite and the peat
 - $-\varphi < 13$ mrad granite
 - $-\varphi > 13$ mrad -peat
- Varying values in the peat, top 10-20 cm low resistivity and high phase: hot spot
 - $-\rho < 200~\Omega m$ (however, only in the top 10-20 cm below surface)
 - $-\varphi > 22$ mrad (spatial changes in the phase values)

Results

 Granite is below the sensitivity of the electrode configuration at By 46 → we cannot resolve the granite at By 46

Results

- By 68 is a perpendicular profile to the previous By 25 and By 46
- Validate the geometry of the phase distribution we measured at By 25 and By 46

IP results

 The IP in the peat is varying between 13 and 30 mrad → varying biogeochemical activity

Geochemical analysis

 High dissolved organic carbon (DOC), iron (Fetot), potassium (K) and sodium (Na) concentrations at S1 and S3 in the top 10-20 cm → indicator for biogeochemical hot spots.

IP analysis

- The conductivity (σ ') and polarization (σ ") are high at the surface and steeply decrease with depth across the top 20 cm
- The decrease of the phase (ϕ) is less pronounced than σ' or σ''
- The conductivity, polarization and phase in the top 20 cm at S1 and S3 are remarkably higer than at S2

- Corresponding to the geochemical analysis (DOC and iron), the top 20 cm at S1 and S3 are interpreted as biogeochemical hot spots
- $\sigma'>5$ mS/cm and $\sigma''>80$ μ S/cm \rightarrow Hot spot

Conclusion

- We characterized biogeochemical hot spots and resolved the peat-granite interface with induced polarization
- IP results could be verified by
 - the manually measured peat thickness
 - the geochemical analysis
 - Dissolved organic carbon (DOC), iron (Fe), potassium (K), sodium concentration (Na) correlates to the polarization (σ")
 - Chloride (CI) concentration correlates to the conductivity (σ')

References

- Sumner, J. S. Principles of Induced Polarization for Geophysical Exploration. 1976.
- Binley, A., & Kemna, A. (2005). DC resistivity and induced polarization methods. In *Hydrogeophysics* (pp. 129-156). Springer, Dordrecht.
- Flores Orozco, A., Kemna, A., & Zimmermann, E. (2012). Data error quantification in spectral induced polarization imaging. Geophysics, 77(3), E227-E237.
- Kemna, A., 2000. Tomographic Inversion of Complex Resistivity: Theory and Application. Der Andere Verlag Osnabrück, Germany
- Bücker, M., Orozco, A. F., & Kemna, A. (2018). Electrochemical polarization around metallic particles—Part 1: The role of diffuselayer and volume-diffusion relaxation. *Geophysics*, 83(4), E203-E217.
- Holmer, M., & Storkholm, P. (2001). Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology, 46(4), 431-451.

19