Induced polarization for the spatial characterization of biogeochemical hot spots

Timea Katona¹, Jakob Gallistl¹, Sven Nordsiek², Matthias Bücker³, Sven Frei², Stefan Durejka², Benjamin Gilfedder² and Adrian Flores-Orozco¹

(1) Research Group Geophysics, Department of Geodesy and Geoinformation, TU-Wien, Austria; (2) Department of Hydrology, University of Bayreuth, Germany; (3) Institute for Geophysics and Extraterrestrial Physics, TU Braunschweig, Germany
Introduction

- Biogeochemical hot spots are spatially limited areas where processes such as sulfate or iron reduction take place in high reaction rates compared to the surrounding area.
- Biogeochemical hot spots are of major interest due to the possible emission of greenhouse gases (carbon dioxide).

Objective

- Biogeochemical hot spots are sensitive environments. Classical geochemical sampling methods (e.g., piezometers or suction cups) bring oxygen into anoxic areas.
- Delineate field scale biogeochemical hot spots and their geometry without disturbing the system.
- Resolve the granite bedrock and the overlying peat.
 - If the granite is resolved, we can focus on the changes in the peat.
- Noninvasive geophysical method – induced polarization.
- Hypothesis:
 - Granite has lower polarization response than peat.
 - Biogeochemical active areas have higher polarization response than peat.
Induced polarization

- Induced polarization (IP)
 - Imaging 4-electrode array
 - Two electrodes used for current injections, two electrodes used for voltage measurements
 - Interchange electrode pairs → normal and reciprocal measurements
 - Impedance is measured → complex conductivity/resistivity
 - Developed for detecting metallic minerals

\[Z = \frac{U}{I} = |Z| \cdot e^{i\varphi} \]

\[\rho^* = \frac{1}{\sigma^*} = \sigma' + i\sigma'' = |\sigma|e^{i\phi} \]

- \(Z \) – impedance, \(U \) – voltage, \(I \) – current, \(\varphi \) – phase shift, \(\rho \) – resistivity, \(\sigma \) – conductivity, \(i = \sqrt{-1} \)
Induced polarization

- In the presence of an external electrical field the electrons in a metallic conductor relocate along the conductor’s surface.
- In the electrolyte the charged conductor attracts ions.
- Migration currents charge the electrolyte around the poles of the conductor.
- The charging continues until it reaches the equilibrium.

Fig: Bücker et al., 2018

J_{mig} - migration current
J_{diff} - diffusion current
E_{ext} - external electric field

Bücker et al., 2018
Study site

- Lehstenbach catchment in Bavaria (Germany).
 - Granite bedrock
 - Riparian wetland: peat soil, with the vegetation peat moss (Sphagnum) and purple moor-grass (Molinia caerulea)
Experimental setup

- Thickness of the peat was measured by sticking a metal rod of 0.5 cm diameter into the soft ground until it reached a solid surface.

- IP measurements at 1 Hz
 - 64 profiles (black lines)
 - 3 profiles presented here: By 25, By 46 and By 68
 - 64 electrodes per line
 - 20 cm separation between electrodes and lines
 - coaxial cables
 - stainless steel electrodes
 - DAS1 unit Multi-Phase Technologies

- Geochemical analysis
 - Fluid samples
 - 3 locations: S1, S2 and S3
 - Freeze core
 - 2 locations: S1 and S2
Experimental setup

By 25
4.4 m

By 68
3 m

By 46
8.2 m
Pictures of the site

Electrode

Sphagnum

Thick grass and moss, electrode spacing: 20 cm

Measurement setup and DAS1 instrument
Data quality

- Normal – reciprocal measurements
- The pseudosection of By 25 in terms of apparent resistivity (ρ_a) and apparent phase (ϕ_a).
- Data collected with coaxial cable show high data quality
Normal-reciprocal analysis

- Analysis of the normal and reciprocal misfit helps to identify outliers and to define error model parameters (Flores Orozco et al., 2012).
- The histograms of the misfit show normal distribution with low standard deviation (\(\sigma_R=0.027 \), \(\sigma_\phi=1.1 \)).
Results

- Phase values help to resolve the granite and the peat
 - $\varphi < 13$ mrad - granite
 - $\varphi > 13$ mrad - peat
- Varying values in the peat, top 10-20 cm – low resistivity and high phase: hot spot
 - $\rho < 200 \Omega m$ (however, only in the top 10-20 cm below surface)
 - $\varphi > 22$ mrad (spatial changes in the phase values)
Results

- Granite is below the sensitivity of the electrode configuration at By 46 → we cannot resolve the granite at By 46
Results

- By 68 is a perpendicular profile to the previous By 25 and By 46
- Validate the geometry of the phase distribution we measured at By 25 and By 46
IP results

- The IP in the peat is varying between 13 and 30 mrad \(\rightarrow \) varying biogeochemical activity
 - Peat, where the phase >22 mrad we interpret as hot spot
Geochemical analysis

- High dissolved organic carbon (DOC), iron (Fe_{tot}), potassium (K) and sodium (Na) concentrations at S1 and S3 in the top 10-20 cm → indicator for biogeochemical hot spots.
IP analysis

- The conductivity (σ') and polarization (σ'') are high at the surface and steeply decrease with depth across the top 20 cm.
- The decrease of the phase (ϕ) is less pronounced than σ' or σ''.
- The conductivity, polarization and phase in the top 20 cm at S1 and S3 are remarkably higher than at S2.
- Corresponding to the geochemical analysis (DOC and iron), the top 20 cm at S1 and S3 are interpreted as biogeochemical hot spots.
- $\sigma'>5 \text{ mS/cm}$ and $\sigma''>80 \mu\text{S/cm} \rightarrow \text{Hot spot}$
Conclusion

- We characterized biogeochemical hot spots and resolved the peat-granite interface with induced polarization
- IP results could be verified by
 - the manually measured peat thickness
 - the geochemical analysis
 - Dissolved organic carbon (DOC), iron (Fe), potassium (K), sodium concentration (Na) correlates to the polarization (σ'')
 - Chloride (Cl) concentration correlates to the conductivity (σ')
References

• Sumner, J. S. Principles of Induced Polarization for Geophysical Exploration. 1976.