

Field observations of subsurface flow path evolution over 10 millennia

Anne Hartmann, Ekaterina Semenova, Theresa Blume, Markus Weiler

DFG and SNF

Landscape and soil evolution for the more impatient: place for time substitution

Chronosequences

- e.g. land-use change impact studies: site selection based on years since disturbance
- Or: site selection based on years since hillslope formation

(e.g. Lohse and Dietrich, 2005: 300 year vs 4 million year old volcanic soils)

Hillslope evolution in the field Our testbed: glacial moraines

Advantages:

- Hillslopes of different ages in close proximity: place for time
 - glacial forefields provide unique opportunities

Challenges:

- Short field seasons
- Harsh environment
 - difficult for long-term monitoring hydrological processes

Interdisciplinary study of hillslope evolution

The HILLSCAPE Project involves soil scientists, geomorphologists, weathering experts, biologists and hydrologists

Our chronosequence in the Swiss Alps

Experimental design

3 plots per moraine, a gradient in vegetation complexity

hillslopes ice-free 1990

hillslopes ice-free 1860

Soil development

Bulk density decreases, porosity and silt content increase with age

Soil water retention curves

Water retention increases with age

Brilliant Blue dye tracer experiments

Dye tracer experiments

- 36 dye tracer experiments
- following the same design as the large rainfall experiments along age and vegetation complexity gradients

age

Flow type classification

Flow type identification

Relative frequency of macropore flow increases with age

Conclusions

A LOT of change already happens in the first 160 years

Generally:

- Pronounced changes in subsurface structure/texture (soil physics)
- Pronounced changes in flow paths
- Pronounced changes in water storage

So what?

Understanding how hillslope structure (hillslope form) evolves and how this affects, and is affected by, vegetation and hydrological and biogeochemical cycles (hillslope function) is important to:

- manage hillslopes (including newly developed hillslopes, such as those created after mining)
- effectively restore degraded hillslopes

HELMHOL

More information:

 Hartmann, A., Semenova, E., Weiler, M., and Blume, T.: Field observations of soil hydrological flow path evolution over 10 Millennia, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-28, in review, 2020.

https://www.hydrol-earth-syst-sci-discuss.net/hess-2020-28/

 Hartmann, A., Weiler, M., and Blume, T.: The impact of landscape evolution on soil physics: Evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines (submitted to ESSD)

